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Abstract – The complex network framework has been successfully applied to the analysis of
climatological data, providing, for example, a better understanding of the mechanisms underlying
reduced predictability during El Niño or La Niña years. Despite the large interest that climate
networks have attracted, several issues remain to be investigated. Here we focus on the influence
of the periodic solar forcing in climate networks constructed via similarities of monthly averaged
Surface Air Temperature (SAT) anomalies. We shift the time series in each pair of nodes such
as to superpose their seasonal cycles. In this way, when two nodes are located in different
hemispheres we are able to quantify the similarity of SAT anomalies during the winters and
during the summers. We find that data time-shifting does not significantly modify the network
Area Weighted Connectivity (AWC), which is the fraction of the total area of the Earth to which
each node is connected. This unexpected network property can be understood in terms of how
data time-shifting modifies the strength of the links connecting geographical regions in different
hemispheres, and how these modifications are washed out by averaging the AWC.

Copyright c© EPLA, 2013

Introduction. – In recent years the application of
the complex networks to climatological data lead to the
development of the field of climate networks [1–9], where
the nodes represent geographical coordinates and the
links quantify the degree of statistical similarity of the
climate: if the similarity in two nodes is above a certain
threshold, then these nodes are interconnected with a
link [1]. Since the network is defined over a regular grid
of nodes, taking into account that two nodes that are
geographically close tend to have similar climate, strong
local links can be expected [10]. Distant nodes will have
weaker similarity values and thus, teleconnections will, in
general, be represented by weak links.

Climate networks have been found consistent with well-
known climate phenomena, such as the teleconnection
between El Niño and Asian Monsoon basin [11], and
have also provided new insight into our climate. As
teleconnections are not static, but respond to global
climate changes, it has been shown that during periods of
global warming, the number of long-range links increases
due to an increase of the strength of teleconnections [12].
It has also been shown that is possible to predict the
occurrence of an El Niño Southern Oscillation (ENSO)

event by analysing the evolution of the network topology
in El Niño basin [3,13].

Despite the successful application of complex networks
to climate data analysis, to the best of our knowledge the
influence of the solar forcing has not yet been investigated.
The network approach to the study complex systems, such
as the brain or our climate [1,14], is based on identifying
similarities via time series analysis, usually employing
cross-correlation or mutual information measures. In anal-
ogy with functional brain networks, where links between
different brain regions can be clearly identified, which
might or might not have a known underlying anatomical
connection in the brain, in climate networks the links re-
flect climate similarities between pairs of nodes, which are
not necessarily connected via ocean and/or atmospheric
processes. However, a difference with brain functional
networks is that in climate networks the common solar
forcing might induce correlations which could result in a
distortion of the true network backbone. An underlying
assumption of the climate network approach is that, by
building the network from similarities of climate anoma-
lies, the influence of the common solar forcing is removed.
Since the climate system is a complex system, with a wide
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range of time-scales, the interplay of nonlinearities and
noise with a small external periodic forcing is highly non-
trivial [15,16] and a key issue is to analyse the role of the
common solar forcing in the connectivity of the network.

To analyse the influence of the solar annual cycle we con-
sider monthly averaged Surface Air Temperature (SAT)
Anomalies (SATA). Before constructing the network we
first calculate the lag-times between any pair of nodes by
shifting their time series of SAT data (including the annual
cycle) such as to superpose their seasonal cycle. This
allows comparing the anomalies during the same season
in nodes located in different hemispheres.

Since the network connectivity is based in the statistical
similarity of the time series, an increase of connectivity
in the mid-latitudes (where the seasonal cycle is strong
and well defined) and a decrease of connectivity in low-
latitudes (where the seasonal cycle is weak or non-existent)
could be expected if SATA data have a residual effect
of the annual solar forcing. To track the changes in
the network induced by time-shifting we used the usual
graphical representation of climate networks, the Area
Weighted Connectivity (AWC), which is the fraction of
the Earth to which each network node is connected. When
comparing the AWC of the networks obtained with and
without time-shifting we found only minor differences.

This unexpected network property can be understood
from the variation of the similarity values (the Cross-
Correlation, CC, or the Mutual Information, MI) when
these are computed with lag-times. The short-range links
connecting neighbouring nodes, and the long-range links
connecting nodes in the same latitude tend to have zero
lag; thus, their similarity value is not modified and thus,
they do not modify the AWC. The links representing the
well-known teleconnection between El Niño and Indian
Monsoon regions have also zero lag and do not change
the AWC. With respect to the rest of long-range links
that connect nodes in different hemispheres, most of them
have non-zero lags and the time-shifting indeed changes
their values; however, these changes are in general random
and are mainly washed out when computing the average
connectivity.

Dataset. – We consider monthly averaged SAT,
re-analysis data from the Center for Environmental
Prediction/National Center for Atmospheric Research
(NCEP/NCAR) [17]. The data covers the period from
January 1948 to May 2012 (N = 773 months) and have
a spacial grid resolution of 2.5◦ (M = 10226 nodes).
Removing the annual cycle in each node results in zero-
mean anomalies (SATA), which are then normalized to
have unitary variance.

Identification of lag-times. – To compare the cli-
mate in any two nodes, i and j, under the same stage of the
annual solar cycle, we shift the time series in one node, and
find the time shift that gives maximum similarity, which is
referred to as the lag-time, τij . Specifically, we calculated
the Cross-Correlation coefficient (CCij(τ)) between the

Fig. 1: (Color online) Representation of the method used to
identify the lag-time, τij , between nodes i and j. As an example
we plot in panel (a) the cross-correlation of the SAT time series
of nodes close to Rome and Buenos Aires; there the maximum
in the interval [0, 11] occurs at τij = 7 months. (b) CC between
the same nodes but now computed from SATA data (notice
that there is no significant maximum). (c), (d): as (a), (b)
but for the teleconnection between a node in the equatorial
Indian Ocean (7 S, 65 E) and a node in the El Niño basin
(12 S, 145 W). In this case there is a pronounced maximum at
zero lag in (d) (vertical line).

SAT time series (including the annual cycle) in i and j,
shifting one series τ months with respect to the other.
Then, τij is chosen as the value of τ in the interval [0, 11]
where CCij(τ) is maximum (see fig. 1). There are pairs of
nodes for which CCij(τ) has two maxima in the interval
[0, 11]; this can be frequent when one of the nodes is in the
tropical regions, were there is a well-known semi-annual
periodicity. In these cases the lag-time was chosen as the
smallest of the two possible lag-times.

To demonstrate that this procedure indeed gives mean-
ingful lag-times, in fig. 2 we display in color code the lag-
times of three nodes, one in the North Hemisphere (NH),
one in the South Hemisphere (SH), and one in the tropics.
The maps reveal clear characteristic patterns, signatures
of climatic regions. We can also note the memory effect
induced by the oceans, and the almost perfect 6 months
symmetry between the NH and SH.

For the sake of clarity we remark that τij if determined
from the similarity of the SAT field, while the network is
constructed from the similarity of anomalies (SATA field).

Construction of climate networks. – We measure
the degree of statistical similarity of the time series in two
nodes by the absolute value of the Cross-Correlation (CC)
coefficient and by the Mutual Information (MI), using the
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Fig. 2: (Color online) Lag-times of a node in Mongolia (left), in Australia (center) and in the El Niño basin (right).

identified lag-times:

CCij =

∣

∣

∣

∣

∣

1

N

N
∑

t=0

ai(t) aj(t + τij)

∣

∣

∣

∣

∣

, (1)

where the ai and aj are the SATA time series in nodes i

and j, τij is their lag-time, and N = 773 months;

MIij =
∑

m,n

pij(m,n) log2

(

pij(m,n)

pi(m)pj(n)

)

, (2)

where the pi, pj are the probability distributions associ-
ated to ai(t) and aj(t), and pij is the joint probability of
ai(t), aj(t + τij). These probabilities were estimated by
8-bin frequency histograms [2].

We also used the Mutual Information Ordinal Pattern

(MIOP), for which the probabilities pi, pj and pij are com-
puted from the ordinal representation of the time series
ai(t) and aj(t), i.e., from the sequence of Ordinal Patterns
(OPs), ni(t), nj(t), that keep information about the order
in which the values appear in the time series [5,6,18]. This
symbolic transformation allows to compute the MI —and
from that to obtain a network— that takes into account
memory effects at different time-scales, depending on the
way the OPs are constructed.

We consider OPs of length D = 4, and thus the
number of possible different OPs is 24. In this way, the
SATA data in each node i, ai(t), is transformed into
a sequence of integer numbers, ni(t) with ni ∈ [1, 24].
From the symbolic sequences in two nodes we compute the
probabilities of the OPs, and then, the MIOP from eq. (2).

The advantage of the symbolic method is that the
OPs can be constructed with either consecutive or non-
consecutive months. We constructed the OPs within
four consecutive months as well as within four equally
spaced months covering a one-year period. In the following
sections we will present the results only in the former case
because the main conclusions are the same for both ways
of constructing the OPs.

Distribution of link strengths and lag-times. –

A first test of the influence of the lag-times in the
climate network is provided by the analysis of the degree
of similarity, by comparing the distributions of the values
of CC and MI computed with and without lag-times. This

Fig. 3: (Color online) (a), (b): histograms (in log-log scales) of
the absolute value of the Cross-Correlation (|CC|) and of the
Mutual Information (MI), computed with (red) and without
(black) lag-time shifting of the time series as can be seen the
histograms are nearly identical. The blue lines indicate the
two thresholds with which 50% of the links are extracted (see
text for details). (c), (d): histograms of CCij and MIij such
that τij �= 0. The difference with the histograms in (a) and (b)
is a decrease of the maximum value due to the removal of local
links, which are at τij = 0. (e), (f): two-dimensional plots
of the probability (in color code in logarithmic scale) vs. the
value of |CC| or MI and the lag-time. It can be seen that most
of the links with high |CC| or MI values have τij = 0, which can
be expected as the strongest links are short-range connections.

is presented in figs. 3(a), (c) (CC) and figs. 3(b), (d) (MI),
where one can observe that the distributions are almost
identical, with no significant influence of the lag-times in
the mean values or in the shape of the distributions.

Further insight can be obtained by analysing the rela-
tion between the strength of a link and its associated lag-
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Fig. 4: (Color online) AWC plots: the degree of statistical similarity is quantified with the absolute value of the CC (left), the
MI (center) and the MIOP (right), with and without lag-times (lower and upper row, respectively). The thresholds to construct
the network are such that the link density is 50%, with the strongest and weakest links removed.

time. As discussed in the introduction, climate networks
are defined over a regular grid, in which some long-range
teleconnections occur. This fact is reflected in the two-
dimensional probability distributions of similarity values
in the plane (lag-time, CC/MI value) displayed in fig. 3(e)
(CC) and in fig. 3(f) (MI); in both cases the probability
is represented in logarithmic scale. As was expected, the
higher occurrence of high correlations/mutual information
values is at zero lag, confirming the local character of the
vast majority of the connections.

Extracting relevant links with non-zero lag-

times. – In order to build climate networks we need to
define a significance criterion, such that, if the similarity
measure of nodes i and j exceeds the threshold they are
linked, otherwise they are not.

However, since we are interested in observing the effects
of the lag-times in the network topology, we cannot keep
only the strongest links, as these are mainly local and
thus, have zero lag. The influence of the lag-times in the
network connectivity can be observed only if the network
contains weak links. However, when links that have very
low CC or MI values are included, they might not be rele-
vant as these low correlations might occur just by chance.

As a compromise solution we decided to use two thresh-
olds, in the following way: we chose a high threshold to
remove the 25% strongest links (which are at zero lag
and will obscure the influence of the lag-times), and a
low threshold to remove the 25% weakest links (which
are considered noise). In this way the network extracted
preserves 50% of the total links, those that are in the
second and third “quartiles” (see figs. 3(a) and (b)). To
justify the use of a low threshold, we point out that, as the
CC value in eq. (1) is the sum of about 770 terms, it can,

for simplicity be assumed to be the sum of independent
identically distributed random variables with zero mean
and standard deviation equal to 1. Such sum can then
be expected to follow the central limit theorem, thus
the cross-correlation —without the absolute value as in
eq. (1)— can be expected to be a zero-mean Gaussian
distributed with standard deviation around 0.04. Then,
correlation values above 0.03 are likely to occur by chance
with a probability of about 0.4.

Results. – The networks obtained after computing
the three similarity matrices, CCij , MIij and MIOPij

(with the ordinal patterns constructed with four consec-
utive months), and after filtering with the thresholding
technique described previously, are then graphically rep-
resented with the AWC in each node i [12],

AWCi =

∑M

j Aij cos(λj)
∑M

j cos(λj)
. (3)

where Aij is the adjacency matrix and λj is the latitude
of the node j.

The results are presented in fig. 4: in the bottom row the
lag-times were included when we computed the similarity
matrices; in the top row, instead, the similarity matrices
were computed at zero lag.

As can be noticed, the introduction of the lag-times
results only in tiny changes in the network, although the
network constructed via CC values seems to be more
influenced. This is the main and surprising result of our
analysis, since it means that the synchronization of the
time series according to the annual seasonal cycle (that is,
comparing winters with winters, summers with summers
and so on) does not increase the degree of connectivity.
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Fig. 5: (Color online) Variation of the average degree of similarity (WAWC, see text). The top row displays the variation when
the lag-times used are those computed from SAT data, the bottom row displays the variation when the lag-times are chosen
randomly in the interval [0, 11]. The degree of similarity is quantified with the absolute value of the CC (left), the MI (center)
and the MIOP (right).

To investigate if the influence of the lag-times could
be hidden by noise, i.e., by the presence of weak links
that are not significant, or by strong links (those in the
third quartile, as the strongest quartile has already been
removed), we applied an extra filtering technique. To
each link two labels have been assigned: a CC-label and a
MI-label, each of them ranging from 1 to 4, representing
the quartile the CC or MI value belongs to. Then, we
filtered out the links that had one of the two labels equal
to 4 (i.e., they were in the strongest quartile, either in
terms of CC or MI value). In this way most of the local
connections were eliminated. Then, we also eliminated
the links that were in the first quartile of CC and in the
first two quartiles of MI. In other words, we retained links
with small CC values but with intermediate MI values. In
this way we obtained networks with density of the order of
50%, but also their AWC maps (not shown) did not reveal
any significant influence of lag times.

We also considered the influence of a random choice of
the lag-times in the interval [0, 11], and to our surprise,
again the AWC maps did not reveal any clear influence of
the random data shifts.

It is possible that the introduction of lag-times results
in small variations of the strength of the links, that cannot
be observed due to the thresholding process, by which the
similarity matrices, CCij and MIij , are transformed into
adjacency matrices, Aij , of 0’s and 1’s. To investigate
this issue, in each node we computed a Weighted AWC
(WAWC) defined as in eq. (3), but replacing the adjacency
matrix, Aij , with the similarity measure (CC or MI).
Then, we plotted the difference between the WAWC
calculated with lag-times and the WAWC calculated with
zero lags. The results are presented in the first row of

fig. 5, where a positive difference indicates an increase of
the average correlation.

As we can see the changes are indeed very small,
and this observation is consistent in the three similarity
measures, with a localized region of weak correlation en-
hancement, which does not occur in the mid-latitudes. On
the contrary, it seems that an average loss of correlation
influences these regions and, more in general, the global
AWC map. Therefore, not only the introduction of lag-
times produces only very small effects, but these occur in
unexpected regions, such as western equatorial and south-
eastern Pacific.

We tested these results against a random choice of lag-
times in the interval [0, 11] (fig. 5 second row). As can be
seen in this case there is only a loss of correlation, espe-
cially in the ENSO basin. This latter effect is due to the
fact that El Niño region is connected with almost all the
tropical belt, that is a region at zero lag; shifting randomly
the series partially destroys the correlations (see the corre-
lation plot in fig. 1(d)), resulting in a decrease in WAWC.

We performed further checks of the analysis. We
removed the local links by a spatial threshold of 3000 km,
searching for lag effects in the strongest fourth quartile.
In this way only the strong teleconnections have been
considered. However the inclusion of lag-times did not
results in increased in mid-latitude connectivity. We also
considered longer lag-times (all lags equal to 5 years)
which resulted in the loss of the network architecture and
the emergence of noisy structures, as expected.

We point out that, since the analysis was done with
SATA data of 773 months, the network obtained is an
average of the climate network over more than 64 years.
If we use shorter windows the results might be different
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and the network topology might show a different sensitiv-
ity to time shifts. However, by dividing the 773 months
in shorter data sets we can compromise the robustness of
the analysis as it would be performed over short data sets,
and the variability of the results can then be attributed to
either i) insufficient statistics, or ii) the evolution of the
network topology. Nevertheless, the possible influence of
time shifts in networks defined over shorter time intervals
can be an interesting study when performed over data set
consisting, for example, of daily or weekly averaged SAT
values (instead of averaged monthly as here).

We also carried out an explorative analysis of the
geopotential height field at 1000 and 500 hPa, and also
these fields seem to show the same behaviour as the SATA
field here described.

Conclusions. – We have shown that the introduction
of time shifts when computing statistical similarity mea-
sures does not produce significant changes in the AWC
of climate networks built from monthly averaged SAT
anomalies. This is an unexpected finding since the shifts
were aimed at comparing the time series in two nodes at
the same phase of the annual solar cycle (i.e., comparing
winters with winters, summers with summers). This obser-
vation is robust with respect to the choice of the statistical
similarity measure, and is robust with respect to a random
choice of time shifts. Our results can be understood in
terms of the lag-time distribution of the links, and the fact
that most of the links with non-zero lags are weak links
(see the 2D histograms in figs. 3(e), (f)). For these links
the time-shifting indeed changes their similarity values;
however, these changes appear to be random (see fig. 1(b))
and tend to be washed out when computing the AWC.
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