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Many natural systems display transitions among different dynamical regimes, which are difficult
to identify when the data is noisy and high dimensional. A technologically relevant example is a
fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of
millions of cavity modes. Here we study the laminar–turbulence transition that occurs when the
laser pump power is increased. By applying various data analysis tools to empirical intensity time
series we characterize their persistence and demonstrate that at the transition temporal correlations
can be precisely represented by a surprisingly simple model.

PACS numbers: 89.75.-k; 05.45.Tp; 42.55.Wd; 42.60.Mi

Fibre lasers are technologically relevant laser sys-
tems that can display complex spatio-temporal dynamics
which involve nonlinear interactions of a huge number
of cavity modes [1–3]. The transition to “optical tur-
bulence” (in analogy with the laminar-turbulence tran-
sition in hydrodynamic) as the laser pump power is in-
creased has received attention [4] and experimental obser-
vations of spatio-temporal dynamical regimes have yield
new light into the rich underlying nonlinear physics [5, 6].
Long temporal correlations from one round-trip to an-
other have been identified for various pump powers, and
during the laminar-turbulence transition, temporal cor-
relations with much shorter time scales have also been
detected [7].

In [7] temporal correlations were investigated by us-
ing the horizontal visibility graph (HVG) [8], which is a
method that maps a time series into a graph. Each data
point in the empirical intensity time series, {I1 . . . IN}, is
considered a node, and any two nodes, Ii and Ij , are con-
nected by a link if there is “horizontal visibility” between
them: Ii > In and Ij > In for all i < n < j. In this way
the resulting graph keeps information about the temporal
ordering of the data points in the sequence. The graph
was then characterized by the degree distribution, P (k),
that gives the probability that a node (i.e., a data point
Ii) has k links. Specifically, Shannon entropy computed
from P (k), S[P ] (referred to as HVG entropy) was com-
puted for various laser pump powers. When the intensity
time series were pre-processed such that only the inten-
sity peaks higher than a threshold were analyzed, a sharp
decrease of the HVG entropy was detected at the transi-
tion. In contrast, the HVG entropy decreased smoothly
when all the data points were analyzed.

Here we use various data analysis tools to character-
ize the intensity dynamics at the transition. Examples
of intensity time traces and the corresponding Fourier
spectra are shown in Fig. 1. The experimental setup

and datasets are described in [7]: the laser is a Raman
fiber (normal dispersion) of 1 km placed between two
fiber Bragg gratings acting as cavity mirrors; the pump
power is varied from below to above the transition (which
occurs for 0.9 W), and for each pump power a time series
with 5 × 107 data points was recorded, with resolution
dt = 0.0125 ns. At the transition noisy oscillations are
seen with a periodicity of about 2.5 ns, while in the broad-
band power spectrum there is a narrow peak at 0.4 GHz.
As it will be shown latter, the appearance of this noisy
periodicity at the transition can be understood in terms
of a surprisingly simple model.

To investigate the intensity dynamics we compare the
empirical time series with synthetic series generated by
stochastic processes with known properties. In the HVG
approach this can be done by fitting the degree distri-
bution to an exponential, P (k) ∝ exp(−λk), and then
comparing the values of λ obtained from empirical and
synthetic data. It has been conjectured [9] that λ un-
veils a chaotic process if λ < ln(3/2), an uncorrelated
stochastic process if λ = ln(3/2) = 0.405 and a corre-
lated stochastic process if λ > ln(3/2). An exception of
this conjecture is fractional Gaussian noise (fGn) that,
with λ < 0.406, invades the chaotic region [10].

We chose to compare with synthetic data generated
with fractional Brownian motion (fBm) because it mod-
els turbulent systems [11, 12]. fBm is a family of pro-
cesses, BH(t), which is Gaussian, self-similar and en-
dowed with stationary increments. fBm has control-
lable memory that can be tuned by the Hurst expo-
nent H, defining two distinct regions in the interval
0 < H < 1: when H > 0.5 consecutive increments tend
to have the same sign so that the process is persistent ;
in contrast, when H < 0.5 consecutive increments are
more likely to have opposite signs, so that the process
is anti-persistent. When H = 0.5, the process corre-
spond to the memory-less Brownian motion for which
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FIG. 1. Intensity time series and power spectra (separated
vertically for clarity) below, during, and above the transition.
The laser pump power is: (a) 0.8 W, (b) 0.9 W, (c) 0.95 W
and (d) 1.0 W. In the power spectrum at the transition (blue
line) there is a narrow peak at ∼0.4 GHz, while for a slightly
higher pump power (red line) the peak is at ∼0.93 GHz. The
inset shows the broadband nature the spectra.

successive increments are as likely to have the same sign
as the opposite. The fractional Gaussian noise (fGn) is
WH(t) = BH(t+ 1)−BH(t) (fBm-increments) and with
H = 0.5 represents Gaussian white noise.

Figure 2(a) displays the degree distributions P (k) ob-
tained from the “raw” intensity time series below, at, and
above the transition to turbulence, and also from Gaus-
sian white noise. These distributions can be fitted to
exp(−λk) with λ = 0.59, 0.69 and 0.75 for pump power
0.8 W (before), 0.9 W (at) and 1.5 W (after the transi-
tion). By comparing these λ values with those obtained
from fBm generated with differentH values [10], and con-
sidering the same scaling region (3 ≤ k ≤ 20), we infer
the Hurst exponent to be H = 0.3, 0.5 and 0̃.6− 0.7 for
0.8 W, 0.9 W and 1.5 W, respectively. Thus, according to
the conjecture proposed in Ref. [9] the dynamics changes
from anti-persistent (before the transition) to persistent
(after the transition). At the transition, the value of λ is
comparable to the one found for fBm with H = 0.5 that
corresponds to pure Brownian motion.

In contrast, if we first threshold the raw data and keep
only the intensity peaks that are higher than a certain
threshold (as in [7], we use a threshold equal to the in-
tensity mean value plus two standard deviations) we find
that the thresholded data has very different properties,
with λ values being consistent with those found for frac-
tional Gaussian noises (fGn) with λ = 0.403 (H = 0.5)
before the transition, λ = 0.43 (H = 0.7) at the transi-
tion and λ = 0.395 (H 0.4− 0.5) after the transition. At
the transition λ = 0.43, indicates a persistent fractional
Gaussian noise, while all other λ values are very close to
the λ value found for Gaussian white noise (λ = 0.405).

This effect of the threshold resembles the threshold
sensitivity found in certain chaotic systems, where vary-
ing the threshold can lead from clustering to repelling of
extreme events, or vice versa [13].

While this approach for analyzing the persistence prop-
erties of a time series is straightforwards to apply, it is
limited to the fit of P (k) to an exponential, and there-

FIG. 2. HVG degree distributions of “raw” intensity time se-
ries for various pump powers. For comparison the distribution
obtained from Gaussian white noise is also displayed.

fore, detailed information about the shape of P (k) is lost.
It also has the drawback that λ depends on the scaling
region. An alternative approach is based on the entropy,
S[P ], and the Fisher information, F [P ] [14] of the HVG
degree distribution, P (k). In this way, each time series is
represented as a dot in the S[P ]×F [P ] plane [15], and a
“trajectory” is obtained as the pump power is increased,
which captures changes in the dynamics.

In Fig. 3 the results of the analysis of the raw and
the thresholded intensity data are compared to synthetic
data (fBm and fGn). We note that the two empirical
datasets are located very close to the noise “frontier” de-
scribed in [10]. In agreement to what it was previously
inferred with the λ conjecture, the raw data is located
very close to the fBm processes; at the transition is close
to the ordinary Brownian motion, and after the transition
the correlation strength increases with the pump power
until 1.4 W, and slightly decreases for 1.5 W. The inten-
sity peaks above the transition, also in good agreement
with the λ method, is very well represented by the fGn
processes. The transition point (0.9 W) has the lowest
S[P ] and the lowest F [P ], and thus, is a return point of
the trajectory in the S[P ]× F [P ] plane.

Figure 4 displays S[P ] and F [P ] vs. the laser pump
power (which was indicated in color code in Fig. 3), and
it can noticed that, in the raw data, S[P ] and F [P ]
vary gradually, while in the thresholded data, both drop
sharply and then rise gradually.

For the thresholded data above the transition, both,
the S[P ]×F [P ] plane and the fitting of the λ parameter
show consistency with fGn, however there is a difference
in relation to the strength of the correlations and the
inferred H value. The S[P ] × F [P ] plane locates the
transition point slightly below the fGn range (indicated
with triagles), while the fitting of λ indicates similarity
with a persistent fGn (H = 0.7). This difference could
be due to the high sensitivity of the fitting parameter to
the selection of the scaling zone, or to the finite length of
the thresholded time series (while all the raw time series
have 5×107 data points, the thresholded time series have
104 − 105, depending on the pump power [7]).
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FIG. 3. The HVG entropy, S, and Fisher information, F ,
computed from the empirical intensity time series (left: raw
data, right: thresholded intensity peaks) are compared with
synthetic data. The entropy is normalized to the entropy of
Gaussian white noise. For the empirical data, the color code
indicates the laser pump power; for the synthetic data (black
symbols) the Hurst exponent, H, is indicated.

FIG. 4. The HVG entropy, S (circles), and the Fisher infor-
mation, F (triangles), computed from the raw intensity time
series (top) and from the thresholded intensity peaks (bot-
tom) are plotted vs. the pump power. It can be observed
that in the raw intensity data, S and F capture a gradual
variation of statistical properties of the intensity dynamics
during the transition; in contrast, when computed from the
thresholded data, S and F uncover a sharp transition.

To analyze long-range temporal correlations we apply
to the raw intensity data symbolic ordinal analysis [16–
19]. This method is based in transforming a time series
into a sequence of symbols that are defined by a rule that
takes into account the relative temporal ordering among
D values in the time series, but not the values themselves.

To fix the ideas, considering pairs of consecutive inten-
sity values, Ii < Ii+1 gives symbol ‘01’, while Ii > Ii+1

gives ‘10’. If we consider D = 3 values, there are 6 pos-
sible symbols: Ii < Ii+1 < Ii+2 gives ‘012’, Ii < Ii+2 <
Ii+1 gives ‘021’, etc. Considering D values, there are
D! possible symbols (known as ordinal patterns) and by
computing their probabilities we can detect temporal cor-
relations: if all the symbols are equally probable we can
infer that there is no temporal ordering in the sequence,
while on the contrary, more probable and less probable
symbols uncover the presence of preferred and unfavored
order relations. Ordinal analysis was also used in [7] to
investigate the intensity dynamics and the results were

consistent with those obtained with HVG analysis.
Here we apply ordinal analysis to the raw intensity

time series, and, as in [7], we use a lag to uncover order
relations among three values (Ii, Ii+τ , Ii+2τ ), where τ is
an integer that gives an effective sampling time of τdt.
In this way, each symbol encodes information about the
intensity evolution during an interval of 3τdt.

The analysis of the ordinal probabilities vs. τ , shown
in Fig. 5, reveals that below and above the transition
there are no long-range correlations, as in panels 5(a)
and 5(d), for τ large enough, the six patterns are equally
probable. In contrast, at the transition [Fig. 5(b)] the
pattern probabilities oscillate regularly with periodicity
of about 2.5 ns. For a pump power slightly above the
transition, Fig. 5(c), there are also regular oscillations of
the probabilities with τ , but the oscillations are of smaller
amplitude.

Let us next show that these oscillations are captured by
a remarkably simple model: a phase equation describing
an stochastic limit cycle.

Considering that the polar coordinates of a particle
moving in a limit cycle trajectory are a(t)eiφt and ne-
glecting the amplitude variations, the dynamics is de-
scribed by a single rate equation for the phase:

dφ/dt = ω0 + f(φ, t) + ζ(t), (1)

where ω0 is the angular rotation frequency, f(φ, t) is a
2π periodic function [f(φ, t) = f(φ + 2π, t)] that repre-
sents the variability of the instantaneous frequency, and
ζ represents stochastic fluctuations.

By stroboscopic sampling every time interval ∆T , the
limit cycle evolution is described by a circle map [20]:

φ(t+ ∆T ) = φ(t) + ω0∆T + F (φ, t) + ξ(t), (2)

where F (φ, t) is a 2π periodic function that represents
the phase accumulated over the time interval ∆T , due
to the variability of the instantaneous frequency, and ξ
represents the influence of the stochastic term. Assuming
F (φ, t) = K sin(φ) gives

φi+1 = φi + ερ+ (K/2π) sin(2πφi) +Dξi. (3)

where φi = φ(t), φi+1 = φ(t + ∆T ), ρ = ν0∆T with
ν0 = ω0/2π. We also include a parameter ε = ±1 that
determines the direction of the rotation (anticlockwise or
clockwise). In the following we assume that ξi a Gaussian
white noise and D is the noise strength.

Next, we apply ordinal analysis to phase increments,
∆φi = φi − φi−1, generated from iterations of this map.
We keep constant the strength of the nonlinearity, K,
and the strength of the noise, D, and vary ρ as control
parameter. We chose ρ because it is proportional to the
stroboscopic sampling time, ∆T , which is analogous, in
the experimental situation, to the effective sampling time
of the laser intensity, τdt, used to define ordinal patterns
from lagged intensity values.
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For appropriated values of K and D we find that the
circle map gives a set of ordinal probabilities that are
in remarkable agreement with those computed from the
laser data at the transition.

Figure 6 allows a precise comparison: panels (a) and
(b) display in detail the oscillatory behavior of the prob-
abilities with the effective sampling time of the intensity
time series, while panels (c) and (d) display the proba-
bilities computed from iterations of the circle map. We
observe an excellent agreement as the same hierarchi-
cal structure (more/less probable patterns) and clustered
structure (pairs of patterns with the same probability)
are seen when comparing the empirical and the synthetic
data. We note that the ordinal probabilities at the tran-
sition, Fig. 6(a), are reproduced by the iterations of the
circle map with ε = 1, Fig. 6(c), while slightly above
the transition, Fig. 6(b), with ε = −1, Fig. 6(d). This
suggests that immediately after the transition there is a
change of rotation.

Contrasting similar situations in Figs. 6(a) and 6(c),
we observe that ρ = 1 in the circle map data corresponds
to τ = 2.5 ns in the laser data (as indicated with arrows).
Because ρ = ν0τ , using ρ = 1 and τ = 2.5 ns we can
estimate the frequency of the rotation in the limit cycle as
ν0 = 1/τ = 0.4 GHz, in agreement with the narrow peak
seen in the spectrum in Fig. 1. Also comparing similar
situations immediately after the transition, in Figs. 6(b)
and 6(d), we observe that ρ = 2 in the circle map data
corresponds to τ = 4.3 ns in the laser data (as indicated
with arrows). The same argument gives ν0 = 2/τ = 0.46
GHz, and the spectrum in Fig. 1 we see the peak at about
0.93 GHz, which is consistent with 2ν0.

The agreement found is unexpected because, as shown
in the inset of Fig. 1, the spectrum is extremely broad
and thus, it is surprising to find that, in the symbolic rep-
resentation, the intensity temporal dynamics is described
by an stochastic limit cycle with rotation frequency ν0.
It is worth noticing that statistical properties of the in-
tensity values are not described by the statistics of the
phase increments, ∆φi = φi − φi−1, which take both,
positive and negative values.

To summarize, we have applied various data analysis
tools to characterize persistence and temporal correla-
tions in the intensity dynamics of a fiber laser. To char-
acterize the persistence, intensity time series (raw and
thresholded data) were transformed to graphs through
the horizontal visibility algorithm and then compared
with well-known stochastic processes, fractional Brown-
ian motions (fBm) and fractional Gaussian noises (fGn).

Two different techniques that use the graph degree dis-
tribution (fitting the distribution to an exponential, and
computing, from the degree distribution, the Shannon
entropy and the Fisher information) gave consistent re-
sults, with the raw intensity data being consistent with
fBm processes, and the thresholded data, with fGn. At
the transition the raw data is well represented by fBm

FIG. 5. Probabilities of the ordinal patterns computed from
the laser intensity vs. the sampling time. The pump power is
as in Fig. 1: (a) 0.8 W, (b) 0.9 W, (c) 0.95 W and (d) 1.0 W.

FIG. 6. Comparison of the ordinal probabilities computed
from empirical data, panels (a) and (b), and from synthetic
data, panels (c) and (d). In (a) and (b), the probabilities are
computed from the laser intensity time-series and the hori-
zontal axis is the sampling time; the laser operating condition
is (a) at the transition and (b) slightly above the transition
(pump power 0.9 W and 0.95 W, respectively). In panels (c)
and (d), the probabilities are computed from data generated
by iterating the circle map, Eq. (3), and the horizontal axis is
the map parameter, ρ; the other parameters are (c) K = 0.1,
D = 0.02, ε = 1; (d) K = 0.25, D = 0.075, ε = −1.

with Hurst exponent H = 0.5, which corresponds to
pure Brownian motion. Above the transition, both meth-
ods find persistent processes (fBm with H > 0.5). For
the thresholded data above the transition, both methods
show consistency with fGn.

We have also demonstrated that at the transition, tem-
poral correlations can be precisely represented by a sur-
prisingly simple model: a circle map. The physics un-
derlying the emergence of stochastic periodicity at the
transition could be mode locking, and merits further in-
vestigation. The analysis tools proposed here can be ap-
plied to the output signals of other systems that undergo
similar transitions to turbulent behavior [21, 22].
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