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Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers
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Using advanced continuation techniques for dynamical systems, we elucidate the bifurcations leading to
asymptotically stable square-wave pulsing and polarization mode switching in semiconductor lasers with mutual
time-delayed and polarization rotating coupling. We find that the increase of coupling strength leads to a cascade
of Hopf bifurcations on a mixed-mode steady state up to a transcritical bifurcation on a so-called pure-mode
steady state where both lasers emit with the injected polarization state. From these successive Hopf bifurcations
emerge time-periodic solutions that have a period close to the laser relaxation oscillation for weak coupling but
a period close to twice the time delay for large coupling strength. The wave form of the time-periodic solutions
also evolves from harmonic pulsing up to square-wave pulsing as has been observed recently in experiments.
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I. INTRODUCTION

It is now common knowledge that the dynamics of a
semiconductor laser can be modified by the addition of a
time-delayed optical feedback (light being reflected back to
the laser cavity) [1–4] or a time-delayed optical coupling
(unidirectional or mutual coupling from a second laser) [5,6].
When increasing the strength of the time-delayed input,
the laser dynamics easily bifurcate from a steady-state to
time-periodic, quasiperiodic, or even chaotic pulsating laser
output. In most situations the laser dynamics gets a clear
spectral signature of the time-delay time scale [7], which can
be adjusted by varying the coupling or feedback length. The
possibility to generate all-optically pulsating dynamics with a
controllable frequency has raised interest towards applications
such as optical clock recovery or stable microwave signal
generation [8] or, recently, a micro-optical sensing device [9].
On the other hand, chaotic laser outputs have helped to identify
new applications of laser diodes in chaos-based cryptography
[10] and chaos-based random number generation [11,12].

The wave form of the pulsating laser output is known
also to vary as a function of the time delay and nonlinear
optical system parameters. This problem was first studied
in the case of the so-called Ikeda equation [13] that mod-
els a ring nonlinear optical cavities and is of the form
x(t) + T dx(t)/dt = βfNL[x(t − τ )]. The evolution of a single
dynamical variable x is controlled by a first-order filter with
time constant T and a time-delayed input with time delay τ
and strength β. As shown theoretically and later demonstrated
experimentally in a realization using a birefringent plate and
optoelectronic feedback [14], the increase of β may lead
to a square-wave pulsating dynamics of the x dynamical
variable with a period corresponding to 2τ , hence twice the
time-delay period. Depending on the ratio between time delay
τ and system time scale T , the wave form can vary from
square wave to harmonic pulsing [15]. The Hopf bifurcation
from which the 2τ pulsating output originates can be sub- or
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supercritical depending on the form of the nonlinear function
fNL [16]. Transition from harmonic pulsing to square-wave
pulsing has been studied in more complex and multimode
laser systems, including so-called polarization self-modulation
in a vertical-cavity surface-emitting laser (VCSEL) with
polarization rotating optical feedback [17–20], polarization
switching in VCSEL with polarized optical feedback [21],
TE-TM mode switching in an edge-emitting laser (EEL) with
selective polarization rotating optical feedback [22,23], and
more recently in mutually coupled EELs with a polarization
rotating scheme [24]. In some configurations square waves
are not seen as limit cycle attractors but as slow envelopes
of faster chaotic fluctuations such as in chaotic breathers in
optoelectronic feedback systems [25] and stairlike chaotic
modulation of mutually coupled lasers [26]. Square waves with
ultrawide pulse width tunability (from 10 to about 1716 ns)
have also been recently reported from polarization switching
in a mode-locked fiber laser with high fiber nonlinearity [27].

In this paper, we bring insight into the square-wave
switching dynamics as has been observed in mutually cou-
pled EELs with polarization rotating mutual coupling. By
increasing the coupling strength, the two lasers exhibit a
synchronized square-wave modulation of both TE and TM
dynamics. The modal dynamics are anticorrelated, and the
square-wave period is twice the time delay of the optical
coupling. Although the square-wave dynamics have been
numerically well reproduced, their bifurcation origin has never
been elucidated. In particular, in Ref. [24], it is mentioned that
noise terms in the rate equation model are required to sustain
square waves, which otherwise would decay in a transient
towards a steady-state dynamics. In contrast, in Ref. [28],
asymptotically stable square waves are observed numerically,
but the analysis does not capture any Hopf bifurcation with a
frequency that relates to the time-delay time scale, in contrast
to what is expected in other systems showing square waves. By
using here more advanced techniques for bifurcation analysis,
we provide evidence that (1) indeed the square-wave dynamics
as observed in that system originate from a deterministic bifur-
cation mechanism, (2) the bifurcation leading to square waves
is a cascade of supercritical then subcritical Hopf bifurcations
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with a limit cycle period increasing from relaxation oscillation
period to twice the time-delay period as the coupling strength
increases, and (3) the interval of coupling strength where stable
deterministic square waves are observed is very small and the
stability of these solutions is very marginal, as confirmed by
the computation of the Floquet multipliers, and hence can be
strongly affected by noise.

Our paper is organized as follows. In Sec. II we sum-
marize for the reader the model and parameters leading to
the observation of stable square waves, together with the
equations that determine the laser steady states. Section III
discusses the stability of the pure-mode steady state and
shows that it is determined by a transcritical bifurcation and
hence is not associated with the emergence of a stable limit
cycle oscillation. In Sec. IV we then apply the continuation
techniques to the mixed-mode solution and detail a sequence
of Hopf bifurcations to stable square-wave dynamics. We
summarize our results in Sec. V.

II. MODEL AND STEADY STATES

In our laser system, two stripe lasers with dominant
TE emission are mutually coupled with a selective and
polarization rotating time-delayed coupling. More specifically,
the outgoing TE field of each laser is rotated to TM emission
by a Faraday rotator before being reinjected into the other
laser cavity. However, the orientation of the output polarizer
of the Faraday rotator ensures that any TM emission from
either laser or from secondary reflections would be suppressed
in the coupling path. As detailed in Ref. [28], we have modeled
the laser system by the following set of equations, which
provide square-wave switching in good qualitative agreement
with experiments:

dEj,x

ds
= (1 + iα)(gj,x − 1)Ej,x, (1)

dEj,y

ds
= iδEj,y + (1 + iα)(gj,y − 1 − β)Ej,y

+KE3−j,x(s − θ ), (2)

T
dNj

ds
= P − Nj − gj,xIj,x − gj,yIj,y, (3)

where j = 1,2 denote the two lasers, Ex and Ey are orthog-
onal linearly polarized slowly varying complex amplitudes
(corresponding respectively to TE and TM polarizations), and
N is the carrier density. In these equations the time s is
normalized by the photon lifetime, i.e., s = tκ where κ is
the cavity loss rate. T = γN/κ is the ratio between the carrier
(1/γN ) and photon (1/κ) lifetimes (typically about 1000). δ is
the frequency detuning between the x and y polarizations.
α is the linewidth enhancement factor. P is the pumping
current parameter, normalized such that threshold is obtained
for P = 1. The parameters of the polarization-orthogonal
mutual coupling are K and θ , which represent the normalized
coupling strength K = η/κ and the normalized delay time
θ = τκ , respectively. The modal gains include self- and
cross-saturation coefficients:

gj,x = Nj/(1 + εxxIj,x + εxyIj,y), (4)

gj,y = Nj/(1 + εyxIj,x + εyyIj,y). (5)

The system allows for three steady-state solutions: (a)
the mixed-mode solution, in which both lasers emit in x
and y polarization simultaneously and which is symmetric
upon exchange of both lasers, where E1,x = E2,x "= 0, E1,y =
E2,y "= 0, and N1 = N2, and (b) two pure-mode solutions,
in which one laser emits only in the x polarization while
the other only emits in the orthogonal polarization, where
E1,x = 0, E2,x "= 0, E1,y "= 0, E2,y = 0 (pure mode 1) or
E1,x "= 0, E2,x = 0, E1,y = 0, E2,y "= 0 (pure mode 2). In
essence the laser that emits in the x polarization becomes the
master laser which drives the other laser into the orthogonal
polarization through the rotated optical injection. The values
of the parameters shall be taken from Ref. [28]: T = 600 (κ =
300 ns−1 and γN = 0.5 ns−1), α = 3, θ = 900 (corresponding
to a delay time τ = 3 ns), β = 0.04, δ = −0.01, εxx = 0.010,
εxy = 0.015, εyy = 0.025, εyx = 0.020, and P = 2.

III. STABILITY ANALYSIS OF THE PURE-
MODE STEADY STATE

In this section we shall analyze in more detail the equations
determining the steady-state pure mode 1 and its stability. By
replacing Ej,k = Aj,ke

iφj,k and taking into account the steady-
state conditions in Eqs. (1)–(3), we find that the pure mode 1
steady state is determined by

I2,x = P − 1
1 + εxx

, (6)

tanψ = δ + α(g1,y − 1 − β)
g1,y − 1 − β

, (7)

K2 = I1,y

I2,x

{[δ + α(g1,y − 1 − β)]2 + (g1,y − 1 − β)2}, (8)

where Ij,k = A2
j,k and ψ = φ2,x − φ1,y . Equation (6) gives

the intensity of the master laser (laser 2), which does not
depend on the coupling, and Eqs. (7) and (8) allow us to find
the intensity of the slave laser (laser 1) as a function of the
coupling strength K . The solution is plotted in Fig. 1.

The stability of this pure-mode steady state is determined
by a 10 × 10 evolution matrix from the linearized perturbation
equations on the variables Aj,k , φj,k , and Nj . However, the
selective coupling scheme leads to several submatrices which
can be treated separately for the stability analysis.

The equations for the perturbed variables δA1,x and δφ1,x

read

dδA1,x

ds
= (g1,x − 1)δA1,x , (9)

dδφ1,x

ds
= αδg1,x . (10)

Equation (10) gives no information on stability as it is
decoupled and depends on the variations of the other quantities.
Equation (9) gives the following eigenvalue for stability:

λ = g1,x − 1 ! 0 (11)

or, when combined with the steady-state equations (6)–(8),

εxy(1 + εyy)I S2

1,y + [1 − (P − 1)εyy + εxy]I S
1,y − (P − 1) = 0.

(12)
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FIG. 1. (Color online) We plot as a function of the coupling
strength η (a) the intensity of the Iy polarization of the pure-mode
solution, (b) the function determining the transcritical bifurcation
g1,y − 1, and (c) the function determining the Hopf bifurcation fH

in Eq. (18). The red (dark gray) square in (a) and (b) is for the
transcritical bifurcation point. The green (light gray) dot in (a) and
(c) is for the Hopf bifurcation.

The pure mode therefore experiences a first bifurcation that
is determined by Eq. (12). The bifurcation is transcritical as the
eigenvalue is real across the bifurcation point. Equation (12)
gives the value of I1,y at the bifurcation point (labeled S), and
then Eq. (8) gives the corresponding value of KS (ηS). Using
the same parameters as in Ref. [28], we obtain KS = 0.1671
(ηS = 50.13 ns−1) and I S

1,y = 0.9947 at this bifurcation point.
The curve corresponding to Eq. (11) is plotted in Fig. 1, and
the transcritical bifurcation is plotted with a red square. On the
left of the bifurcation the steady-state pure-mode solution is
unstable. The stability of the right-hand part of the branch still
has to be examined with the other perturbation equations.

The perturbation equations related to the quantities δA2,x ,
δφ2,x , and δN2 form another submatrix that does not depend
on the coupling parameters. These equations are similar to the
stability analysis of a single-mode laser diode, and one finds
two complex conjugate eigenvalues of the form λ = −ξ2/2 ±
iω2, where ξ2 is the damping rate of relaxation oscillations with
a frequency ω2, both including the effect of the gain saturation
terms:

ξ2 = 1
T

(
1 + I2,x

1 + εxxI2,x

)
+ 2εxxI2,x

1 + εxxI2,x

, (13)

ω2
2 = 2I2,x

T

(
1 + εxx

1 + εxxI2,x

)
− ξ 2

2

4
. (14)

The eigenvalues have a negative real part and hence
correspond to damped nonlinear oscillations of the field and
carrier variables. The perturbation equations related to the
δA2,y and δφ2,y variables do not bring any eigenvalue to the
stability analysis. Then only a 3 × 3 submatrix related to the
perturbation equations of the quantities δA1,y , δφ1,y , and δN1

remains, which is written
dδA1,y

ds
= (g1,y − 1 − β − 2N1I1,yεyym

2)δA1,y

+mA1,yδN1 + KA2,x sin(ψ)δφ1,y,

(15)

dδφ1,y

ds
= −

[
2αN1A1,ym

2εyy + K
A2,x

A2
1,y

sin(ψ)
]
δA1,y

+αmδN1 − K
A2,x

A1,y

cos(ψ)δφ1,y, (16)

T
dδN1

ds
= −(1 + mI1,y)δN1

− 2A1,y(g1,y − N1m
2εyyI1,y)δA1,y, (17)

where m = (1 + εyyI1,y)−1.
An analysis of the stability matrix shows that the condition

for the existence of purely imaginary eigenvalues λH = iσH

(i.e., a Hopf bifurcation point with frequency σH ) is

0 = fH = (v + v̄ − ξ )(vv̄ − ξv − ξ v̄ + ūu + ω2)

− (vω2 + αuω2 − ξvv̄ − ξuū), (18)

where we have defined the following quantities: v = g1,y −
1 − β, v̄ = v − 2N1I1,ym

2εyy , u = δ + αv, ū = δ + αv̄, ξ =
(1 + mI1,y)/T , and ω2 = 2I1,ym

2N1(1 − mεyyI1,y)/T .
Equation (18) gives the value of I1,y at the Hopf bifurcation

point, and Eq. (8) gives the corresponding value of KH

(ηH ). From our choice of parameters we obtain KH = 0.1892
(ηH = 56.77 ns−1). The corresponding Hopf bifurcation point
is plotted with a green dot in Fig. 1.

The frequency of the Hopf bifurcation σH is given by the
following equation:

σ 2
H = vv̄ − ξv − ξ v̄ + ūu + ω2 > 0. (19)

As can be concluded from Fig. 1 the Hopf bifurcation on the
pure-mode steady state is on the unstable part of the pure-mode
branch of the solution; hence the emerging time-periodic
solution will be initially unstable as well. Moreover, the
frequency of the Hopf bifurcation as can be computed from
Eq. (19) is close to the relaxation oscillation frequency and
hence does not relate to the coupling-induced frequency 1/τ
or the frequency of the square-wave solutions 1/2τ . There
may be more Hopf bifurcations on the pure-mode solution.
In particular, keeping the same parameters but decreasing the
pump value to P = 1.5, we find now three Hopf bifurcations,
but all of them are located again on the unstable part of the
pure-mode branch. In contrast, increasing the pump value P
and with gain saturation coefficients εij equal to zero, we
find now one supercritical Hopf bifurcation located after the
transcritical bifurcation that connects to another unstable Hopf
point on the pure-mode branch. In this case a stable branch
of the time-periodic solution emerges from the pure-mode
solution, but the wave form is harmonic and has a frequency
again close to the laser relaxation oscillation.

The fact that the pure-mode stability analysis does not bring
a pulsation solution at the time-delay period is rather intuitive.
As mentioned earlier, the pure-mode solution corresponds to
a solution where one of the lasers (the one emitting in x
polarization) is the master laser and injects unidirectionally
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in the second laser (which for large enough injection switches
to y polarization). The pure-mode solution therefore relates to
an injection problem with no back (delayed) coupling to the
driving laser. This is clear also in the above detailed stability
analysis. The delayed terms proportional to E2,x do appear
in the 10 × 10 stability matrix; however, with a few matrix
transformations they are eliminated, and the problem reduces
to a 3 × 3 matrix in a block diagonal form. The pure-mode
stability is therefore determined by a transcritical bifurcation
that does not depend on the delayed coupling parameters.

In summary, although the transcritical bifurcation (or in
other parameter ranges, a supercritical Hopf bifurcation)
delimits the transition of the laser dynamics to the steady-state
polarization of the injected field (pure mode), it does not
explain the emergence of the square wave pulsing at twice
the time-delay period. We therefore need to investigate then
the stability and possible Hopf bifurcations on the mixed-mode
steady state.

IV. HOPF BIFURCATIONS ON THE MIXED-MODE
STEADY STATE

The steady-state equations determining the mixed-mode
steady state have been detailed in Ref. [28]. In contrast
to the pure-mode solutions, the stability analysis cannot be
performed analytically since one cannot reduce the 10 × 10
evolution matrix of the perturbation equations to decoupled
submatrices. The stability analysis of the mixed-mode solution
therefore has to be treated numerically. We have taken advan-
tage of continuation techniques for delay-differential equations
(as implemented in the MATLAB package DDE-BIFTOOL) to
compute the mixed-mode steady state and its stability as
one increases the coupling strength. When detecting a Hopf
bifurcation, we are able to compute the emerging branch of
stable or even unstable time-periodic solutions and to detect
secondary period-doubling or quasiperiodic bifurcations to
more complex chaotic dynamics.

The result is plotted in Fig. 2 for the corresponding set
of model parameters. The red branch is the branch of the
pure-mode steady state (see also Fig. 1). The continuation
method finds the same transcritical and Hopf bifurcations
as obtained in the analytics of Sec. III. The black branch is
the branch of the mixed-mode steady state. As the coupling
strength increases, the mixed-mode destabilizes with a first
supercritical Hopf bifurcation (for η ∼ 37 ns−1) to a stable
branch of time-periodic solutions. However, as will be detailed
in the following, this time-periodic solution is a harmonic
pulsing at the relaxation oscillation frequency and therefore
does not resemble the square-wave pulsing at the 2τ period
as seen experimentally and numerically. A further increase
of coupling strength leads to a cascade of unstable Hopf
bifurcations (unstable because they are on the unstable part of
the mixed-mode steady-state branch). Although the emerging
time-periodic solutions are initially unstable, they restabilize
for larger coupling strength, and one observes therefore the
coexistence of several limit cycle attractors with different
frequencies in a quite large range of coupling strength values.
All the limit cycles emerge from a single steady-state solution.
This multistability of time-periodic solutions confirms the
observations of many coexisting solutions made numerically

36 38 40 42 44 46 48 50 52
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H1 2 3 4 5 6 7 8 9 10 11 12 13

Coupling strength η (ns−1)

In
te

ns
ity

 Y
 (

ar
b.

 u
ni

ts
)

FIG. 2. (Color online) Bifurcation diagram of Iy,1 as a function
of the coupling strength η, as computed using a continuation method.
Branches of mixed-mode (black) and pure-mode (red) steady states
are plotted together with the Hopf bifurcations labeled H1 to H13 on
the mixed-mode steady state. The branches of time-periodic solutions
emerging from the different Hopf points are plotted with different
colors. The stable parts of the branches of time-periodic solutions are
shown in bold. Parameters are defined in the text.

by direct integration of the model rate equations and also
observed in experiment [28]. It is interesting to mention
that a similar Hopf restabilization mechanism is known in
the single feedback laser system, where several limit cycle
attractors at frequencies close to the laser relaxation oscillation
frequencies (but different by several multiples of the external
cavity frequency) can coexist for the same parameters and
switching between them occurs randomly in time [29,30].
Again these limit cycles all emerge from a single external
cavity mode.

Hopf bifurcation H12, which is the closest one to the
transcritical bifurcation point on the pure mode, is different
from the other ones because (1) it is subcritical and (2) it
restabilizes from a saddle node on the limit cycle to give rise
to a stable time-periodic solution in a very narrow range of
parameters. As will be confirmed from the analysis of the
Hopf bifurcation frequency and from computing the emerging
time-periodic wave form, the time-periodic solution emerging
from H12 is the square-wave symmetric switching dynamics
with 2τ period.

For still larger coupling strength, we detect another Hopf
bifurcation, H13, on the mixed-mode solution, but it leads to
an unstable time-periodic solution at a frequency close to the
relaxation oscillation frequency (see also Fig. 3). The H13
Hopf bifurcation is located after the transcritical bifurcation
that leads to a stable pure-mode solution; hence the laser
system in that coupling range is inevitably attracted to the
stable steady-state pure-mode solution.

To gain insight into the emerging time-periodic solutions,
we plot in Fig. 3 the period of the laser pulsing along the
different branches of time-periodic solutions as a function
of the coupling strength η. The two dashed lines indicate
the time-delay value (τ = 3 ns) and the value as expected
for the square-wave pulsing dynamics 2τ . One can therefore
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FIG. 3. (Color online) Period of the time-periodic solutions along
the different branches shown in Fig. 2 and emerging from the Hopf
points labeled H1 to H13. The stable parts of the branches of time-
periodic solutions are shown in bold. The dashed lines indicate a time
period equal to τ or 2τ , where τ is the time delay in the laser mutual
coupling.

immediately compare the period of the laser pulsing, as
computed by the continuation method, and the system and
coupling delay time scales. The first Hopf bifurcation H1 has
a period of about 0.5 ns, which is close to the laser relaxation
oscillation period. The Hopf frequency decreases, hence the
period of the pulsing dynamics increases, as one increases the
coupling strength. Hopf bifurcation H11 leads to time-periodic
dynamics at a period close to the time-delay value τ = 3 ns.
Hopf bifurcation H12 finally leads to a time-periodic pulsing
with a period of about 2τ = 6 ns; hence it is a good candidate
to generate the 2τ square-wave forms we observe numerically
and experimentally. Hopf bifurcation H13 yields again a
time-periodic solution with a period close to the relaxation
oscillation period.

To further analyze the time-periodic dynamics emerging
from the mixed-mode Hopf points, we plot in Fig. 4 the
computed wave forms along the different branches of time-
periodic solutions that appear successively when increasing
the coupling strength. All the subplots correspond to a single
period of the time-periodic dynamics. The dynamics is the
same in both lasers and is here only shown for laser 1.
In all cases in Figs. 4(a)–4(e) the intensities of the x- and
y-polarization modes are anticorrelated. The case in Fig. 4(a)
corresponds to a harmonic pulsing with a period of about
0.58 ns, which is close to the relaxation oscillation period of the
free-running lasers for this operating current. Such a harmonic
pulsing emerges from the first supercritical Hopf (H1) point
on the mixed-mode branch. As one increases the coupling
strength, the system experiences a cascade of Hopf bifurcations
to different limit cycle attractors with different frequencies, as
demonstrated in Fig. 3. This is further confirmed in Fig. 4,
which shows that the time period of the pulsing dynamics
ranges from about the relaxation oscillation period in Fig. 4(a)
to a slightly longer period in Figs. 4(b) and 4(c) up to the
time-delay value in Fig. 4(d) and twice the time-delay value
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FIG. 4. (Color online) Samples of the time-periodic pulsing
computed along the different branches of time-periodic dynamics
in Fig. 2. Only the x-mode [red (light gray)] and y-mode [blue
(dark gray)] intensities of laser 1 are plotted, but the solutions are
the same for laser 2. (a) Branch 1, η = 49.98 ns−1, (b) branch
6, η = 50.14 ns−1, (c) branch 10, η = 49.95 ns−1, (d) branch 11,
η = 50.02 ns−1, and (e) branch 12, η = 50.00 ns−1. Branch j means
that it emerges from the Hopf bifurcation labeled j in Fig. 2.

in Fig. 4(e). The wave form also changes when one looks
at the different limit cycle dynamics. The wave forms of the
time-periodic dynamics emerging from the first Hopf point,
H1 [Fig. 4(a)], is a harmonic pulsing with single pulses at
the relaxation oscillation period, which complexifies into a
squarelike wave form made of damped relaxation oscillations
modulated by a slower time period in Fig. 4(c). The wave
forms emerging from the H11 and H12 bifurcation points are
square-wave forms at either the time-delay value or twice the
time-delay value.

All these different wave forms in Figs. 4(a)–4(e) with
different time periods are stable in a given range of the
coupling strength, and the continuation method also unveils
the coexistence of several of these limit cycle attractors for the
same value of the coupling strength. One identifies here a clear
interest of the continuation technique, which is able to follow
time-periodic dynamics irrespective of their stability. A direct
numerical integration would only identify the stable attractors,
and to find coexisting solutions we need a very careful mapping
of the dynamics by varying the initial conditions and/or forcing
numerically jumps between the coexisting solutions. The
square-wave forms in Figs. 4(c) and 4(d) have not been found
in the numerics of Ref. [28] or in the experiment of Ref. [24],
but our continuation method confirms they correspond to stable
attractors in a given range of the coupling strength. We have
then complemented our simulations of Ref. [28] by looking
more systematically for square-wave time-periodic dynamics
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FIG. 5. (Color online) Square-wave switching with a period close
to the delay time τ , obtained by direct integration of the rate equations.
The coupling strength is η = 49.60 ns−1. Only the x-mode [red (light
gray)] and y-mode [blue (dark gray)] intensities of laser 1 are plotted,
but the solutions are the same for laser 2.

with a period close to τ . Figure 5 shows one such case obtained
numerically by direct integration of the rate equations, where
the square-wave dynamics has a period close to τ , resembling
the one obtained by continuation in Fig. 4(c).

The square-wave form in Fig. 4(e) agrees with the one
found numerically and experimentally, but such a solution
emerges from an unstable (subcritical) Hopf bifurcation which
cannot be detected simply by numerical integration. As shown
in Fig. 6, we furthermore observe that as the time-periodic
solution along the branch emerging from H12 destabilizes,
the square-wave form also changes its shape while keeping
the same time period equal to 2τ . The stable 2τ square-wave
form has both x- and y-mode intensities above zero [Fig. 6(a)],
while the unstable 2τ square-wave form has both polarization
mode intensities reaching zero as time increases. This feature
has been observed numerically in the transient square-wave
dynamics towards the pure-mode steady state in Ref. [28]
and now receives theoretical confirmation from the stability
analysis of the time-periodic solutions.
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FIG. 6. (Color online) Comparison between stable and unstable
square-wave dynamics at the 2τ period, along the branch emerging
from Hopf bifurcation H12. (a) Stable solution, η = 50.00 ns−1 and
(b) unstable solution, η = 51.74 ns−1. Only the x-mode [red (light
gray)] and y-mode [blue (dark gray)] intensities of laser 1 are plotted,
but the solutions are the same for laser 2.

The combination of Figs. 2–4 provides a deterministic
explanation for the square-wave switching in this laser system.
As one increases the coupling strength, the laser experiences a
cascade of first supercritical Hopf bifurcation at the relaxation
oscillation frequency and then successively unstable Hopf
bifurcations to limit cycle attractors of different frequencies
and different wave forms. These wave forms can restabilize
through an increase of the coupling strength. For a large
enough coupling strength and as the system approaches the
transcritical bifurcation to pure-mode steady-state, square-
wave time-periodic dynamics emerges from Hopf bifurcations
with a frequency that relates to the inverse of the coupling
delay time.

V. CONCLUSIONS

In summary, we have provided a deterministic bifurcation
explanation for the square-wave switching dynamics in a
laser system made of two mutually coupled edge-emitting
lasers with polarization rotating time-delayed coupling. As
the coupling strength increases, the laser exhibits a cascade of
Hopf bifurcations to time-periodic dynamics with different
frequencies and different wave forms. For small coupling
the Hopf bifurcation is supercritical, and the time-periodic
dynamics is a harmonic wave form with a period close to
the relaxation oscillation period. For larger coupling and
before a transition (transcritical bifurcation) to a steady-state
dynamics, the laser undergoes a Hopf bifurcation to square-
wave dynamics with a period equal to the time delay τ or
to twice the time-delay value, 2τ . Square-wave forms where
the mode intensity reaches zero are found to be unstable.
The laser shows coexistence of several limit cycle attractors
with therefore different wave forms and frequencies in a
large range of the coupling strength. These results are made
possible thanks to the use of advanced continuation techniques
that allow us to track time-periodic solutions irrespective of
their stability, in contrast to conventional direct integration
of the rate equations. Combined with the analytics on the
Hopf bifurcation for the so-called pure-mode steady state,
this work sheds light on both our previous numerical studies
and the experimental observations. In particular, it would be
interesting to find a square wave of period τ also in experiment
since this is shown here to be a coexisting stable limit cycle
attractor. Finally, this work demonstrates that square-wave
dynamics is a stable attractor in this laser system and does not
need or is not supported by the addition of noise. This result
is the consequence of the additional complexity of our model
equations (1)–(3) with respect to the equations of Ref. [24].
The inclusion of gain saturation coefficients and frequency
detuning has made it possible to identify a relatively small
range of coupling strengths where square-wave time-periodic
switching dynamics is an asymptotically stable solution. In
the model of Ref. [24], without these additional terms only
transient square-wave dynamics were found. How much the
asymptotic stability of square-wave dynamics depends on the
gain saturation and detuning values remains an interesting
question for future work but requires an in-depth continuation
of bifurcations in a multiparameter space. Experimentally, it
is not possible to conclude from the time traces of Ref. [24]
whether the observed square-wave dynamics is an unstable,
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but noise-sustained, transient dynamics or a deterministic
asymptotically stable square-wave switching of the kind shown
in Fig. 6. Indeed time traces are recorded on a short time span,
and a careful tracking of the transition from stable to unstable
square waves would require a very fine tuning of the coupling
strength.
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