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 Motivation: hyper-regular and time-crystal states 

 Analogy between time-delayed systems and spatially-

extended systems

 Dynamics of diode lasers with time-delayed feedback

• Without modulation: irregular optical spikes

• With weak periodic modulation of the laser current

 Quantification of the temporal regularity of the timing of 

the spikes using the Fano Factor

 Conclusions and open questions
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Not all “disordered systems” are equally disordered

But some disordered 

systems show a slower grow 

of density fluctuations 

(asymptotic scaling between 

surface and volume growth).

Non-hyper-uniform Trivial hyper-uniform Non-trivial hyper-uniform

How does the number of particles inside the 

circle varies with the radius of the circle?



 Hyper-uniform states exhibit an anomalously long-ranged 

suppression of density fluctuations. Many observations.

 Time-crystal states in periodically driven systems exhibit:

− highly regular oscillations (in space and in time) that persist 

over long time intervals, 

− these oscillations are robust under small variations of the initial 

conditions or parameters (“rigidity”),

− break time-translation symmetry because the period of the 

oscillations differs from the period of the driving signal: 

subharmonic locking but no harmonic locking.

− Observed in many-particle quantum systems.

Time-crystal and hyper-uniform states: peculiar 

states of some disordered systems 

4



 The spin orientation flips during each 

driving period, so it takes two periods for 

the spins to return to something 

resembling their initial state. 

 But to someone viewing the system at 

fixed intervals (that is, stroboscopically), 

the system appears to be in equilibrium.

N. Y. Yao and C. Nayak, Physics Today Sep. 2018 



Stochastic time delayed systems (TDSs) represented by

du(t)/dt = f (u(t), t) + K u(t-) + (t)

are infinite dimensional because the initial condition is the 

function u(t) defined in [-,0].

The dynamics of some TDSs has similarities to the dynamics of 

some one-dimensional spatially extended systems (1D SESs)

u(x,t)/t = f(u,x,t) + D  2 u/x2 + (x,t)   with x(t) in [0, L]

Can we find time crystal behavior in classical, high-

dimensional dynamical systems?   
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C. Quintero-Quiroz, M. C. Torrent, and C. Masoller, Chaos 28, 075504 (2018)



Similarities between time-delayed and spatially-extended systems 

(pattern formation, wave propagation) can be visualized using a 2D 

representation.
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Can we find a stochastic time delayed system that 

has peculiar states which are analogous to hyper-

uniform or time-crystal states? 

Main question
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 Time-delay due to propagation time (ns)

 Laser current can be modulated with a 

small-amplitude signal.

 Near threshold: stochastic dynamics 

(quantum spontaneous emission). 

C. Masoller, Chaos 7, 455 (1997)

Semiconductor laser with feedback light

Model simulations (years ago): increasing the feedback strength  complex dynamics
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Key advantage: experiments can be done with precise control of 

different parameters (here: modulation amplitude, modulation 

frequency and dc value of the laser current)

We focus on the parameter region where the laser emits “spikes”. Questions:

 Can we lock the spikes to a weak periodic signal that drives the laser 

current? 

 Which waveform is best for observing highly regular spikes?

 How regular can the spikes be?

 How can we quantify the regularity of the spike timing?

Without modulation:
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J. Tiana-Alsina et al, New J. Phys. 21 103039 (2019)

Without modulation: 

irregular spike timing

With pulsed modulation 

(2.4% of Idc):

• regular 1:1 locked 

spikes;

• irregular oscillations in 

between the spikes
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Early experiments with sinusoidal modulation

A. Aragoneses et al., Optics Express 22, 4705 (2014).

No modulation

1.2%

1.6%

2%

Idc = 39 mA

fmod = 17 MHz

Distribution of intervals between spikes 

(inter-spike-intervals)



Sinusoidal modulation: varying the modulation frequency while 

keeping constant the modulation amplitude (1.2 % IDC)

7 MHz

49 MHz

T. Sorrentino et al., Optics Express 23, 5571 (2015). 

14 MHz

26 MHz

31 MHz

39 MHz



Locking “plateaus”
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T. Sorrentino et al., Optics Express 23, 5571 (2015). 

1 spike 

every 2 

modulation 

cycles

1 spike 

every 3 

modulation 

cycles

Why no 1:1 locking plateau?

Average time interval 

between consecutive 

spikes.

Average time interval 

between consecutive 

spikes, normalized to 

the modulation period.



Earlier work
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1:1 locking found with large 

modulation amplitude (14%)

D. W. Sukow and D. J. Gauthier, IEEE J. Quantum Electron 36 (2000). 



How regular can the timing of 

the spikes be?



Distribution of inter-spike-intervals (log color code) for different 

modulation frequencies (Idc=26 mA, mod. amplitude=0.631 mA  2.4%)
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With weak sinusoidal 

modulation: no 1:1 locking 

plateau (consistent with 

earlier experiments).

Pulsed modulation Sinusoidal modulation
Time 

interval 

between 

consecutive 

spikes, 

normalized 

to the 

modulation 

period



The Fano Factor: a precise measure 

of spike timing regularity



 Divide the intensity time trace in Nint non-overlapping segments 

of duration Tint.

 Count the number of spikes in each segment, {N1, N2, … NNint}.

 Calculate the mean and the variance, <Ni>, 2

 Calculate the Fano factor as

 F depends on the duration of the counting interval, Tint.

 If Tint is very small, F=1 because the sequence of counts is a 

sequence of 0s and 1s.

 If the process that triggers the spikes is fully random, F=1 Tint.

 To test the presence of correlations in the timing of the spikes:

• Shuffle the inter-spike intervals

• Recalculate the spike times

• Recalculate F

• Compare the F values of the original and shuffled spike times.

How to calculate the Fano Factor?
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The Fano Factor has been widely used to analyze the 

timing of neural spike trains
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2 2 10

Tint 2Tint 3Tint
4Tint

Nint = 4

M. C. Teich et al, J. Opt. Soc. Am. A 14, 529 (1997)

In our experiments the total 

recorded time, 5 ms, contains 

9000-120000 spikes, depending 

on the parameters.

Number of intervals: Nint = 1000, 

Duration of each interval: Tint = 5 s

N0 N1
N2 N3  …

Sequence of counts: {Ni} = {2, 0, 2, 1}



Fano Factor (color code) of sequences of optical spikes 
recorded for different Idc and fmod, keeping fixed Amod (1-2.5 % of Idc)

 Blue regions: small F  small   regular sequence of counts 

 regular spikes.

 Yellow regions: large F  large   high variability in the 

sequence of counts.

 For the pulsed signal there are three blue regions; for the 

sinusoidal signal, only two.

Pulsed modulation Sinusoidal modulation

26 mA



How the Fano Factor depends on the duration of the counting interval? 

Here: pulsed modulation, Idc=26 mA, the color represents the mod. frequency 

(MHz).
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 Sharp minima reveal that the sequence of counts is very regular when the 

counting interval contains an integer number of modulation periods.

 Tint =Tmod: the sequence of counts is (1,1,…,1), i.e., 1000 intervals with one 

spike in each interval.
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Nint = 1000

Tint (s)
Tint /Tmod

5 s
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With sinusoidal modulation: 

Original spike sequence Shuffled spike sequence
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 First minima at Tint=2 Tmod

Tint/Tmod Tint/Tmod

 Minima are more pronounced in the original spike sequence than in the 

shuffled one (temporal correlations are removed when shuffling the spikes).



For some modulation frequencies: power law variation of 

the Fano factor with the size of the counting window
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Pulsed modulation

fmod

5 MHz

25 MHz

Tint/Tmod

Tint (in units of Tmod)

Tint (in units of Tmod)

Only the timing of the spikes is regular; the 

fluctuations between spikes are irregular.



Power law persists for longer counting windows?
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Original spike sequence Shuffled spike sequence

Nint Nint

Power law variation saturates 

when the sequence of inter-

spike intervals is suffled.

Spike timing is regular over time 

intervals that contain 104 cycles 

of the modulation.

Tint/Tmod Tint/Tmod



 Pulsed modulation generates locked spikes (1:1 and 2:1) with 

long-range regularity (analogous to “hyper-uniform” states).

 Sinusoidal modulation generates sub-harmonically locked 

spikes with long-range regularity (no 1:1 locking, analogous to 

“time-crystal” states).

 This is in contrast with classical nonlinear oscillators that show 

both, 1:1 and higher order lockings.

 Which mechanisms induce long-range order? 

 Why the sinusoidal signal does not produce 1:1 locking?

 Model simulations are in good agreement with the observations 

[J. Tiana-Alsina and C. Masoller, Appl. Sci. 11, 7871 (2021)]

 Generic phenomena that may be observed in other periodically 

modulated stochastic time delayed systems?

 Influence of the feedback strength and the delay time?

Conclusions and open questions
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Thank you for your attention!

Cristina.masoller@upc.edu

J. Tiana-Alsina et al., Phys. Rev. E 99, 022207 (2019)

J. Tiana-Alsina and C. Masoller, Appl. Sci. 11, 7871 (2021)


