

Symbolic patterns, clusters and hierarchies in spiking systems

Cristina Masoller UPC, Barcelona, Spain

www.fisica.edu.uy/~cris

Dynamics Days Asia Pacific 08 Chennai, July 2014

Andres Aragoneses

Taciano Sorrentino

Carme Torrent

Collaborators

Campus d'Excel·lència

Research lab: nonlinear dynamics of semiconductor lasers

- Research goals: are optical spikes similar to neuronal spikes?
- Potential for ultra-fast optical, brain-inspired information processing?

Introduction

Semiconductor lasers with optical feedback: stochastic and highdimensional dynamical systems

 Method of symbolic time-series analysis and experimental setup

Results

- Inferring signatures of determinism
- Clusters in the symbolic dynamics
- Response to external periodic forcing

Conclusions and take home message

12/09/2014

C. Masoller

Semiconductor lasers

Campus d'Excel·lència Internacional

Used in:

- Fiber-optics communications
- Optical data storage (CDs, DVDs ...)
- Barcode scanners, laser printers, computer mice
- Biomedical applications (imaging, sensing ...)
- etc

- Feedback induces nonlinear dynamics:
 - Multi-stability
 - Regular pulses
 - Extreme pulses
 - Intermittency
 - Chaos

The intensity dropouts resemble neuronal spikes

(CONTROL PARAMETER)

This spiking dynamics is referred as low-frequency fluctuations

- Complex interplay of:
 - Feedback delay time
 - Various noise sources
 - Nonlinear light-matter interactions

⇒ Stochastic and highdimensional system

- Over years a lot of work has been devoted to understand the laser spiking behavior and to identify simple models.
- A. Prasad et al, Low-frequency fluctuations in external cavity semiconductor lasers: understanding based on a simple dynamical model, J. Opt. B: Quantum Semiclass. Opt. 3 242 (2001).

Goals

- To develop a method of time-series analysis for determining signatures of determinism;
- To extract new information;
- To compare model predictions with observations;
- To find a minimal model;
- To explore potential for building optical neurons.

Governing equations

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

 $|E|^2 \sim \text{photon number (output intensity)}$

 $N \sim$ number of carriers (electron-holes)

$$\frac{dE}{dt} = \frac{1}{2\tau_p} (1+i\alpha)(G-1)E + \eta E(t-\tau)e^{-i\omega_0\tau} + \sqrt{\beta_{sp}}\xi$$

$$\frac{dN}{dt} = \frac{1}{\tau_N} \left((\mu + N - G|E|^2) \right)$$
feedback noise
$$\eta = \text{feedback strength}$$

$$\tau = \text{feedback delay time}$$

$$u = \text{pump current}$$

 μ = pump current

(control parameter)

In **deterministic** simulations: the spikes (dropouts) are **transient**.

- But in stochastic model simulations: bursts of dropouts.
- In the experiments: which dropouts are triggered by noise and which ones are deterministic?

Model predictions

Information in the spike sequence?

A. Torcini et al, Phys. Rev. A 74, 063801 (2006) J. Zamora-Munt et al, Phys Rev A 81, 033820 (2010)

- Main problem: we can measure only one variable (the laser intensity)
- Also a problem: the detection system (photodiode, oscilloscope) has a finite *bandwidth* that gives limited temporal resolution.
- Our strategy: we analyze the sequence of interdropout-intervals (IDIs):

$$\Delta \mathbf{T}_{i} = \mathbf{t}_{i+1} - \mathbf{t}_{i}$$

Event level description of complex systems

- Examples of sequences of events:
 - Intervals between threshold crossings, barrier crossings,
 - Neurons: inter-spike intervals (ISIs),
 - Human communication: inter-event user times (SMS, emails, Twitters).
 - Earth and climate: intervals between earthquakes, extreme events (tornados, rainfalls) etc.
- The identification of patterns in the sequence of events allows for:
 - Model verification
 - Parameter estimation
 - Classification of different types of dynamical behaviors
 - Predictability forecasting

Introduction

- Method of symbolic time-series analysis and experimental setup
- Results
- Conclusions and take home message

- Has been widely used to analyze data generated from complex systems
 - Financial, economical
 - Biological, life sciences
 - Geosciences, climate
 - Physics, chemistry, etc
- Able to:
 - Distinguish stochasticity and determinism
 - Classify different types of dynamical behaviors (pathological, healthy)
 - Quantify complexity
 - Identify coupling and directionality.

Brandt & Pompe, Phys. Rev. Lett. 88, 174102, (2002).

- "Words" of D letters can be formed by considering the order relation between sets of D values {...x_i, x_{i+1}, x_{i+2}, ...}.
- For D=3 there are 6 possible words

Example: the set (5, 1, 7) gives "102" because 1 < 5 < 7

- Advantage: the transformation keeps information about correlations in the time-series.
- Drawback: the set (5,1,100) also gives word "102".

12/09/2014

1 , a 4 7 , a 4 13 , a 19 , a 6 3 3 9 15 21 21 4 _____ 10 ____ 16 ____ 22 ____ 5 / 11 / 17 · 23 · 23 6 ______ 12 _____ 18 _____ 24 _____

- The probabilities of the words unveil correlations between events.
- How to select D? Optimal D depends on:
 - The length of the time series.
 - The time scale of correlations.
- For optical spikes: D=2 (D=3) reveal correlations among 3 (4) spikes

Number of possible ordinal patterns: D!

	1	31 •••	61 •••	91
	2	32	62	92 ••••
D=5	3	33	63 ••••	93 •••••
	4	34 ••••	64 ••••	94 ••••
	5	35 •••	65 ••••	95 ••••
	6	36 ••••	66 ••••	96
	7	37 •	67 • • •	97
	8	38	68 • 🔨 •	98 📏 🔶
	9	39 🖍 🔨	69 • 🔨 •	99 🝾 🛶 🖉
	10	40 ••••	70 •	100
	11	41 ••••	71	101
	12	42	72	102
	13	43 •	73	103
	14	44	74	104
	15	45	75	105
	16	46	76	106
	17	47	77	107
	18	48	78	108
	19	49	79	109
	20	50	80	110
	21	51	81	111
	22	52	82	112
	23	53	83	113
<u> </u>	24	54	84	114
on:	25	55	85	115
	26	56	86	116
	27	57	87	117
	28	58	88	118
	29	59	89	119
	30	60 •••	90 •••	120

Classifying cardiac biosignals using ordinal pattern statistics

congestive heart failure (CHF) vs healthy subjects.

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Introduction

- Method of time-series analysis and experimental setup
- Results
- Conclusions and take home message

UNIVERSITAT POLITÈCNICA

External cavity - 45 cm External 50/50 Beamsplitter reflector Laser Diode to Optical Spectrum Analizer Temperature and pump current controller Hitachi Laser Diode (HL6724MG) Detector

o Oscilloscope

GHz)

 $\lambda \sim 674.2 \text{ nm}$ 5mW

C. Masquer 7% threshold reduction

12/09/2014

Introduction

Method of time-series analysis and experimental setup

Results

- Inferring signatures of determinism
- Clusters in the symbolic dynamics
- Response to external periodic forcing
- Conclusions and take home message

Correlations between 3 consecutive spikes

Campus d'Excel·lència Internacional

D=2: 3-spike correlations? Null hypothesis: fully random sequence of spikes $\Rightarrow P(01) = P(10)$

N. Rubido et al, Phys. Rev. E 84, 026202 (2011)

Word probabilities: 10 0.55

Consistent with stochastic at low pump current, but signatures of determinism at high pump current.

12/09/2014

At low pump current: are the spikes fully random? New experiment

Campus d'Excel·lència Internacional

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

12/09/2014

Also in another data set recorded at a different temperature (T=20 C)

Campus d'Excel·lència Internacional

Are the deviations from the null hypothesis significant?

Recorded data

Surrogated data

Error bars computed with a binomial test, gray region is consistent with N.H.

12/09/2014

C. Masoller

Which dropouts are triggered by noise?

Histogram of Inter-dropout-intervals (IDIs)

We use a **threshold** to classify the inter-dropoutintervals as **short** and **long** intervals

Constructing the words with 2 consecutive SIs or LIs

- Campus d'Excel·lència Internacional
- At high currents: significant differences
 - Lls consistent with random events
 - SIs more deterministic.
- But at low currents, the spikes can not be classified in two types with significant differences.

Pump current (mA)

Constructing the words with 3 consecutive SIs or LIs

Campus d'Excel·lència Internacional

- At high currents: significant differences
- But at low currents, the spikes can not be classified.

Similar results were obtained in the other dataset (T=20 C)

Influence of the threshold used to classify IDIs as LIs and SIs

Campus d'Excel·lència Internacional

 $\Delta T^* = most$ probable value

Error bars computed with a binomial test, gray region consistent with NH

- LIs have statistical features as close as possible to random events:
 - Exponential distribution of values
 - Uniform distribution of word probabilities
- Good statistics: there are enough consecutive LIs and SIs
 - The NH region is sufficiently narrow
 - For the LIs, the error bars are in the NH region
 - For the SIs, the error bars are out of the NH region.

Introduction

Method of time-series analysis and experimental setup

Results

- Inferring signatures of determinism
- Clusters in the symbolic dynamics
- Response to external periodic forcing
- Conclusions and take home message

Ordinal analysis unveils new information

Campus d'Excel·lència Internacional

There is a hierarchical and clustered organization of the probabilities of the words

In another experiment: also the same hierarchy and the same 2 clusters

Campus d'Excel·lència Internacional

75,000 – 880,000 spikes (different laser, new oscilloscope)

(Prof. Struzik't talk) 33

Can we find a minimal model that displays these features?

A modified circle map: minimal phenomenological model

Campus d'Excel·lència Internacional

A. B. Neiman and D. F. Russell, *Minimal model for electroreceptors of paddlefish*, PRE 71, 061915 (2005)

Introduction

Method of time-series analysis and experimental setup

Results

- Inferring signatures of determinism
- Clusters in the symbolic dynamics
- Response to external periodic forcing

Conclusions and take home message

Response to external periodic modulation

Campus d'Excel·lència Internacional

Relevant for understanding neuronal encoding of external stimuli

12/09/2014

Experiment-model comparison

Minimal circle-map model

Campus d'Excel·lència Internacional

Experiments @ 660 nm

Similar observations @ 1550 nm Interpretation: locking to external forcing

Introduction

- Method of time-series analysis and experimental setup
- Results
- Conclusions and take home message

- Novel method for identifying signatures of determinism in complex time series.
- Spikes were classified in two categories: one stochastic; the other displaying signatures of determinism.
- We found new symbolic states with an hierarchical and clustered organization.
- We identified a minimal model. Robust under external forcing.
- Potential breakthrough: optical neurons for neuro-inspired information processing.
- Present work: towards understanding why the modified circle map is a good minimal model.

- Ordinal analysis is a powerful method of symbolic timeseries analysis
- useful for understanding data, uncovering patterns,
- for improving system modeling, model comparison, parameter estimation,
- -for classifying data,
- -for improving predictability and forecasting.

Thanks to

You for your attention!

Andres Aragoneses

Taciano Sorrentino

Carme Torrent

Papers @ www.fisica.edu.uy/~cris

- A. Aragoneses et al, Scientific Reports 3, 1778 (2013).
- A. Aragoneses et al, Scientific Reports 4, 4696 (2014).

