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Where are we? UPC Campus Terrassa
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Laser lab in Gaia Building, 

UPC Campus Terrassa
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 Complex systems and data analysis

 Ordinal analysis: Lasers and neurons

 Hilbert analysis: Climate data

 Network analysis: Retina fundus images

Outline
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for groundbreaking contributions to our understanding of complex systems

½ Syukuro Manabe and Klaus Hasselmann ½ Giorgio Parisi



 High-dimensional, large number of interacting elements, 

heterogeneous structure, multiscale, memory, adaptation.

 The elements and/or the interactions are nonlinear.

 Often display abrupt transitions and extreme events.

What is a complex system?

G. Bianconi et al, Complex systems in the spotlight: next steps after the 2021

Nobel Prize in Physics, J. of Phys: Complexity 4, 010201 (2023).



Time Time

Data analysis methods allow to discover statistical 

similarities in very different systems

10-9 s 10-3 s

(High-dimensional, Memory)



{…xi, xi+1, xi+2, …}

Possible order relations among  three numbers (e.g., 2, 5, 7)

First data analysis method: ordinal analysis

Bandt and Pompe: Phys. Rev. Lett. 2002

{…2, 5, 7…}

{…2, 7, 5…}

{…5, 2, 7…}

{…5, 7, 2…}

{…7, 2, 5 …}

{…7, 5, 2…}



The number of ordinal patterns increases as D! 

A problem for short datasets.



From a time series, by counting the different patterns, 

we can calculate the set of “ordinal probabilities”

?
A. Analyze the probabilities 

(are differences 

statistically significant?) 

B. Compute information 

theory measures 

(entropy, complexity)

Ordinal analysis has been extensively used: 

 to test if a model is good for the data, 

 to fit the model’s parameters, 

 to classify different types of data based on similarities 

of probabilities of ordinal patterns.





N

i

ii ppH
1

ln

Probability from 

surrogates

I. Leyva, J. M. Martinez, C. Masoller, O. A. Rosso, M. Zanin, “20 Years of Ordinal Patterns:

Perspectives and Challenges”, EPL 138, 31001 (2022).



Sequence of inter-spike-intervals (ISIs)  sequence of 

ordinal patterns

021=B 012=A

120=D

D=3 



The analysis of the ordinal probabilities 

uncovers similarities in ISI sequences

Forcing amplitudeForcing amplitude

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)J. M. Aparicio-Reinoso et al PRE 94, 032218 (2016)

Ordinal 

probabilities

Diode laserNeuron model



 Data centers, AI systems, HPC consume 

huge amounts of energy.

 Big concern in the context of climate change.

 The human brain processes huge amounts of 

information using only 19 Watts.

 Uncovering genuine similarities between 

neurons and lasers will allow to develop 

photonic neurons, able to process 

information as real neurons do, but 

• much faster,

• with much less energy consumption.

Uncovering similarities between neurons 

and lasers… Interesting but relevant?
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European Centre for 

Medium-Range Weather 

Forecasts, Reading, UK



Time series recorded in our lab show excitability, tonic 

spikes, and bursting. Similar to real neurons? 
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A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent and C. Masoller, "Unveiling the complex 

organization of recurrent patterns in spiking dynamical systems", Sci. Rep. 4, 4696 (2014).

C. Quintero-Quiroz, J. Tiana-Alsina, J. Roma, M. C. Torrent, and C. Masoller, “Characterizing

how complex optical signals emerge from noisy intensity fluctuations”, Sci. Rep. 6 37510 (2016). 
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Understand how to mimic with lasers the way 

neurons encode and process information.
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Main challenge

J. A. Reinoso, M. C. Torrent, and C. Masoller, “Emergence of spike correlations in periodically 

forced excitable systems”, Phys. Rev. E. 94, 032218 (2016). 

Rate coding?

Weak, subthreshold signal



 Single-neuron encoding: slow because long spike 

sequences are needed to estimate the ordinal probabilities.

 Ensemble encoding: can be fast because, from the ISI 

sequences of all the neurons, few spikes per neuron can be 

enough to accurately estimate the probabilities.

Single-neuron vs ensemble encoding
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M. Masoliver and C. Masoller, “Neuronal coupling benefits the encoding of weak periodic signals 

in symbolic spike patterns”, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020). 

Weak, subthreshold signal



Ensemble encoding of a weak sinusoidal signal in the 

frequencies of occurrence of ordinal patterns
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M. Masoliver and C. Masoller, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020). 



Laser-neuron comparison: encoding a 

weak periodic signal using spike rate code

Experiments 

modulating 

the laser 

current

Neuron 

model with 

the same 

input signal

Sinusoidal Pulsed signal

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, “Comparing the dynamics of 

periodically forced lasers and neurons”, New J. of Phys. 21, 103039 (2019) (2019).

J. Tiana-Alsina, C. Masoller, “Time crystal dynamics in a weakly modulated stochastic time 

delayed system”, Sci. Rep. 12, 4914 (2022).

Spike rate in color code



How about the temporal code? 

Ordinal analysis unveils differences in spike timing.

Diode 

laser with 

optical 

feedback

FitzHugh-

Nagumo

model

Sinusoidal Pulsed signal

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, New J. of Phys. 21, 103039 (2019).

Most 

probable 

pattern in 

color 

code



 Complex systems and time series analysis

 Ordinal analysis: Lasers and neurons

 Hilbert analysis: Climate data

 Network analysis: Retina fundus images

Outline
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x(t)

y(t)=

HT[x]

Hilbert Transform applied to Surface Air Temperature (SAT)

SAT in a 

geographical 

region

HT[sin(x)]=cos(x) 
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x

y 

a Instantaneous amplitude and phase

Clear physical meaning only if x(t) is a narrow-band signal. Then, a(t) coincides with 

the envelope of x(t) and (t)=d/dt, coincides with the main frequency in the spectrum.



Using the HT we analyzed “re-analysis data” from the 

European Centre for Medium-Range Weather Forecasts, with 

high spatial and temporal resolution in the period 1979-2016

73 x 144 = 10 512 geographical sites, in each site the SAT time series has 13696 days



Average of the cosine of the Hilbert phase
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How can we visualize the passing of the seasons?

Average annual evolution of cos().
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How to detect significant changes in the last 30 years?

Significant if:

1979198820072016 
 aaa

ssa

a
2. 


ssa

a
2. 

or

with s computed from 100 “surrogates”

D. A. Zappala, M. Barreiro, C. Masoller, “Quantifying changes in spatial patterns of surface air 

temperature dynamics over several decades”, Earth Syst. Dynam. 9, 383–391 (2018). 



 Complex systems and time series analysis

 Ordinal analysis: Lasers and neurons

 Hilbert analysis: Climate data

 Network analysis: Retina fundus images

Outline
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 For the diagnosis of eye 

diseases & follow up of 

treatments.

 Biometric identity identification.

 Opportunity to detect other 

diseases (alterations in retina 

network may reflect alterations 

in other arterial systems).

Analysis of retina fundus images 

cristina.masoller@upc.edu        @cristinamasoll1

H2020-675512



 45 high resolution images (3504 × 2336 pixels)

15 healthy subjects

15 glaucoma

15 diabetic retinopathy

Steps:

1. Pre-process and un-supervisely, segment the images.

2. Extract network.

3. Compare networks obtained from different images. 

4. Classify the images.

Data and image analysis steps
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cristina.masoller@upc.edu        @cristinamasoll1

https://www5.cs.fau.de/research/data/fundus-images/

 For every subject we had:  

─fundus photography 

─manual segmentation done 

by an expert ophthalmologist.



Step 1: Pre-process and segmentation
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cristina.masoller@upc.edu        @cristinamasoll1

We adapted an unsupervised algorithm, originally developed 

for segmenting images of cultured neuronal networks.

D. Santos-Sierra, I. Sendiña-Nadal, I. Leyva et al. Cytometry Part A. 87, 513 (2015).

P. Amil, F. Reyes-Manzano, L. Guzmán-Vargas, I. Sendiña-Nadal, C. Masoller, “Network-based 

features for retinal fundus vessel structure analysis”, PLoS ONE 14, e0220132 (2019). 

Manual segmentation



Step 2: extract the network (identification of the optical 

nerve, nodes and links and assign weights to the links).
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cristina.masoller@upc.edu        @cristinamasoll1



Steps 3 and 4: Compare the networks extracted from 

different images and classify the images.

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).
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cristina.masoller@upc.edu        @cristinamasoll1

Distance distribution to 

the central node in the 

manual segmentation 

 {pi,j}: distances between probability distributions that 

characterize the networks obtained from images i and j.

 We used nonlinear dimensionality reduction (Isomap) to 

reduce the set of 45x45 {pi,j} values to only two features. 



Performance of network features in the manual segmentation

Distribution of weights 

along the shortest 

path to central node
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cristina.masoller@upc.edu        @cristinamasoll1

Distribution of 

weighted degrees

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



In the automated segmentation
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cristina.masoller@upc.edu        @cristinamasoll1

Fractal dimension 
Mean weight distribution along 

the shortest path to central node 

Simple network 

features do not 

differentiate

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



 Data analysis techniques allow us to uncover patterns and 

relationships in data, which characterize (and sometimes 

predict) the behavior of complex systems.

 Even when the data does not meet the mathematical or 

algorithmic requirements, the results can give useful info.

 Different methods provide complementary information.

 “Surrogate” tests are needed to determine if the numerical 

values are statistically significant.

 Data analysis is a fast growing field with many applications.

Take home messages

Holger Kantz: “Every data set bears its own 

difficulties: data analysis is never routine”
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Thanks!

Thank you for your attention!


