

Lucio Garcia(1), Giulio Tirabassi(2), Cristina Masoller(2), Pablo Balenzuela(1)

- (1) Universidad de Buenos Aires
- (2) Universitat Politecnica de Catalunya

X COMPLEXITAT DAY June 21, 2023

Campus d'Excel·lència Internacional

Data

- 28000 news articles published in Argentina in six main cities.
- 26/05/2022 26/09/2022
- Use an unsupervised non-negative matrix factorization algorithm to classify the articles in 20 non-orthogonal topics.

S. Pinto, F. Albanese, C. O. Dorso, and P. Balenzuela. *Quantifying timedependent media agenda and public opinion by topic modeling*. Physica A, 524:614, 2019

📩 cristina.masoller@upc.edu 🈏 @cristinamasoll1

Data

We obtain a time series for each topic in each town, by adding the number of articles per day.

We define "events" using two thresholds.

How to find "synchronized events" in two time series? Example

Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries

Carl-Friedrich Schleussner^{a,b,c,1}, Jonathan F. Donges^{a,d}, Reik V. Donner^a, and Hans Joachim Schellnhuber^{a,e,1}

^aPotsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; ^bClimate Analytics, 10969 Berlin, Germany; ^cIntegrative Research Institute on Transformations of Human–Environment Systems, Humboldt University, 10099 Berlin, Germany; ^dStockholm Resilience Centre, Stockholm University, 114 19 Stockholm, Sweden; and ^eSanta Fe Institute, Santa Fe, NM 87501

9216-9221 | PNAS | August 16, 2016 | vol. 113 | no. 33

Event synchronization measures

- Define "events" in each time series.
- Count c^τ (x|y) = number of times an event appears in x shortly after (within interval τ) an event appears in y. Idem for c^τ (y|x).
- Calculate:

$$Q_{\tau} = \frac{c^{\tau}(y|x) + c^{\tau}(x|y)}{\sqrt{m_{x}m_{y}}} \qquad q_{\tau} = \frac{c^{\tau}(y|x) - c^{\tau}(x|y)}{\sqrt{m_{x}m_{y}}}$$

 m_x , m_y are the number of events in each time series. $Q_{\tau} = 1$: the events of the signals are fully synchronized. $q_{\tau} = 1$: the events in x always occur before those in y. $q_{\tau} = -1$: the events in x always occur after those in y.

No "causal" information

Quian Quiroga et al, PRE 66, 041904 (2002).

Granger Causality

Hypothesis: X_1 and X_2 can be described by stationary autoregressive linear models.

past of
$$X_1$$

 $X_1(t) = \sum_{j=1}^p A_{11,j} X_1(t-j)$
Residual
error
 $+ E_1(t)$

$$X_{1}(t) = \sum_{j=1}^{p} A_{11,j} X_{1}(t-j) + \sum_{j=1}^{p} A_{12,j} X_{2}(t-j) + \frac{\text{Residual}}{E'_{1}(t)}$$

 $||f\langle E'_1(t)\rangle < \langle E_1(t)\rangle \quad \Longrightarrow \quad X_2 \rightarrow X_1$

C. W. J. Granger Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969) (> 10000 citations)

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Transfer Entropy (TE)

TE: is the Conditional Mutual Information, given the "past" of one of the variables.

> TE (x,y) = MI (x, y|x_{τ}) TE (y,x) = MI (y, x|y_{τ})

- MI (x,y) = MI (y,x) but TE $(x,y) \neq TE(y,x)$
- TE and GC are equivalent for Gaussian processes.

T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).

Many alternative approaches to try to "solve" these problems.

Results. Example topic "Avion Irani"

📩 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

Results. Example topic "Diego Luciani"

Results

🖂 cristina.masoller@upc.edu 🈏 @cristinamasoll1

Preliminary conclusions

- The networks obtained with event synchronization measures strongly depend on the criteria used to define the events and on the thresholds to obtain adjacency matrices.
- There are coincidences and differences with the networks obtained by combining GC and TE.
- It could be interesting to analyze networks obtained by counting only the number of synchronized events, without "penalizing" the occurrence of unsynchronized events.
- Temporal info can be obtained by counting events in time segments.

Thanks to my collaborators and Thank you for your attention!

