Generation On-Demand of Extreme Pulses in Optically Injected Semiconductor Lasers

Tian Jin¹, Chen Siyu¹, Cristina Masoller²

¹ Beijing Institute of Technology, China
² Universitat Politecnica de Catalunya, Spain

Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

DE CIENCIA

Campus d'Excel·lència Internacional

ESLW 2017 Denmark, September 2017

Extreme events in nature

Campus d'Excel·lència Internacional

Optical systems generate "big data" and provide an opportunity to understand extreme events & advance their predictability.

- Extreme intensity pulses (also known as Optical Rogue Waves) have been observed in different laser systems.
- Numerically, they have been studied in 0D, 1D and 2D models, and different mechanisms have been identified.
- In 0D extreme pulses likely occur when the trajectory approaches the saddle point corresponding to the laser "lowintensity" state.
- In 1D or 2D systems, they might be generated by a similar mechanism, but they can also arise due to the presence of one or more spatial degree of freedom (those mechanisms can not be studied with 0D models).

Deterministic Optical Rogue Waves

Cristian Bonatto,¹ Michael Feyereisen,² Stéphane Barland,² Massimo Giudici,² Cristina Masoller,¹ José R. Rios Leite,^{2,3} and Jorge R. Tredicce^{2,3}

In our system, optical rogue waves can be

- deterministic, generated by a crisis-like process.
- controlled by noise and/or by current modulation.
- predicted with a certain anticipation time.

Can they be triggered "on demand"?

Governing equations

6

Campus d'Excel·lència Internacional

- \circ Complex field, E –Laser intensity ~ $|E|^2$
- Carrier density, N

These simple rate-equations provide good qualitative agreement with the experimentally observed intensity dynamics.

Bifurcation diagram in color code: log(number of pulses)

Campus d'Excel·lència Internacional

N. Martinez Alvarez, S. Borkar and C. Masoller, Eur. Phys. J. ST 226, 1971 (2017)

Campus d'Excel·lència Internacional

J. Zamora-Munt et al, PRA 87, 035802 (2013)

Campus d'Excel·lència Internacional

Number of pulses above $\langle I \rangle$ +8 σ in 1 μ s deterministic simulations.

Campus d'Excel·lència Internacional

Spontaneous RWs in point "A"

Generated by nonlinear dynamics (deterministic simulations)

Generated RWs in point "B"

Number of pulses generated by 100 perturbations

Optimal perturbation parameters?

Campus d'Excel·lència Internacional

Number of pulses generated after 1000 perturbations

Success probability depends on the laser parameters. In point "C" it can exceed 50%.

Comparison between "generated" and "spontaneous" extreme pulses

Campus d'Excel·lència Internacional

Statistics of generated pulses

Campus d'Excel·lència Internacional

- It is possible to trigger optical rogue waves "on demand" by means of a step-up perturbation of the laser current.
- The success probability strongly depends on the laser parameters and on the perturbation parameters.
- Intensity and phase dynamics during the "generated" rogue wave are the same as during "spontaneous" rogue waves (generated by the intrinsic nonlinear dynamics).
- Practical application?

Thank you for your attention !

Tian Jin, Chen Siyu, and Cristina Masoller, "Generation of rogue waves by external perturbations and phase dynamics during rogue waves in optically injected semiconductor lasers", submitted (2017) Available at: http://www.fisica.edu.uy/~cris/