Spikes and extreme pulses in the dynamics of semiconductor lasers

Cristina Masoller

Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

International Year of Light 2015

Workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics Cusco, Peru, July 2015

Where are we?

People and lab

12 senior researchers,2 posdoctoral researchers10 phd students

Laser 🚬

What do we study? Nonlinear dynamics of semiconductor lasers

Optical feedback

Campus d'Excel·lència Internacional

- optical spikes similar to neuronal spikes?
- Optical injection

Mirror

Extreme pulses

- Can they be predicted?
- Can they be controlled?

Motivation

Optical Neurons open the possibility of developing novel photonic neuroinspired information processing systems: ultrafast (ms vs ns-µs).

- Extreme events occur in many complex systems
 - "big data" approach: the laser setup allows for recording large amounts of data,
 - Useful for testing methods of prediction ("early warning signals") and control.

- Introduction
 - Nonlinear dynamics of semiconductor lasers
 - Method of time series analysis
- Part 1: optical neurons
- Part 2: extreme pulses

Semiconductor lasers

- Widely used in:
 - Communications
 - Data storage (CDs, DVDs ...)
 - Barcode scanners, laser printers, computer mice
 - Life sciences (imaging, sensing ...)
 - Etc.

- Optical feedback can improve the emission characteristics but it can also induce nonlinear dynamics:
 - Irregular power dropouts
 - Chaotic emission

Governing equations

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

 $|E|^2 \sim \text{photon number (output intensity)}$

 $N \sim$ number of carriers (electron-holes)

$$\frac{dE}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(G - 1)E + \eta E(t - \tau)e^{-i\omega_0\tau} + \sqrt{\beta_{sp}}\xi$$
$$\frac{dN}{dt} = \frac{1}{\tau_N} \left(\mu + N - G|E|^2 \right) \qquad \text{feedback noise}$$
$$\eta = \text{feedback strength}$$

Gain: $G = N/(1 + \varepsilon |E|^2)$

 τ = feedback delay time μ = pump current

(control parameter)

Model predictions

- In deterministic simulations: the spikes are transient.
- But in stochastic simulations: bursts of spikes.

- In the experiments: which spikes are noise-induced and which ones are deterministic?
- Can we infer signatures of determinism?
- Is there any information in the spike sequence?

A. Torcini et al, Phys. Rev. A 74, 063801 (2006) J. Zamora-Munt et al, Phys Rev A 81, 033820 (2010)

How to extract information from optical spikes?

- Problem: we can measure only one variable (the laser output intensity).
 30 Misure 100 Mis
- Also a problem: the detection system (photodiode, oscilloscope) has a finite *bandwidth* that gives limited temporal resolution.
- <u>Solution</u>: event-level description. We analyze the sequence of interspike-intervals (ISIs):

$$\Delta \mathbf{T}_{i} = \mathbf{t}_{i+1} - \mathbf{t}_{i}$$

Method of analysis: symbolic ordinal analysis

012

Campus d'Excel·lència Internacional

Ordinal Patterns (OPs)

Brandt & Pompe, PRL 88, 174102 (2002)

Example: (5, 1, 7) gives "102" because 1 < 5 < 7

Random spikes \Rightarrow all patterns are equally probable

Advantage: the OP probabilities uncover spike correlations.

- Drawback: we lose information (5,1,100) also gives "102".

210

 $1 \quad \mathbf{7} \quad \mathbf{7} \quad \mathbf{13} \quad \mathbf{19} \quad \mathbf{19} \quad \mathbf{7}$ $2 \quad \mathbf{8} \quad \mathbf{14} \quad \mathbf{20} \quad \mathbf{7}$ **D=4** 3 3 9 4 15 21 21 4 10 16 22 5 11 17 23 6 12 18 24

- How to select optimal D? depends on:
 - The length of the data.
 - The length of correlations in the data.

Number of possible ordinal patterns: D!

 $D_{=}$

	1	31	61 •••	91 •••
_	2	32	62 •	92 •••
5	3	33 🛶 🔨	63 ••••	93 ••••
	4	34 ••••	64 ••••	94 ••••
	5	35 🛶 🔨	65 ••••	95 ••••
	6	36 🛶 🔨	66 ••••	96 •••••
	7	37 •	67 •	97 🐪 🕶
	8	38 •	68 •	98 🝾
	9	39 🖍 🔨	69 •	99 🍾 🔷
	10	40 ••••	70 •	100 100
	11 -	41 ••••	71	101
	12	42	72	102
	13 📌 🔹	43 •	73 ••••	103
	14	44 • • • • •	74	104
	15 🖍	45	75	105
	16	46	76	106
	17	47	77	107
	18	48	78	108
	19 🔥 🔸	49	79	109
	20	50	80	110
	21	51 •	81 ••••	111
	22	52	82	112
	23	53	83	113
	24	54	84	114
	25	55	85	115
	26	56	86	116
	27	57 👡 🔨	87	117
	28	58 ••••	88	118
	29	59	89	119
	30 🛶	60 •••••	90 ••••	120

Ordinal analysis has been widely used to analyze the observed output signals of complex systems

 Example: abrupt polarization switching.

 An entropy measure provides an early warning of the transition.

C. Masoller et al, New J. Phys. 17 (2015) 023068

Another example

Campus d'Excel·lència Internacional

Transition laminar - turbulence in a fiber laser

UNIVERSITAT POLITÈCNIC

Spiking dynamics

Probabilities of (01) and (10) uncover 3-spike correlations

Null Hypothesis: random spikes \Rightarrow P(01) = P(10)

Are optical spikes random?

Campus d'Excel·lència Internacional

A. Aragoneses et al, Scientific Reports 3, 1778 (2013)

Are the results **significant**?

Error bars computed with a binomial test, gray region is consistent with N.H.

04/08/2015

A. Aragoneses et al, Scientific Reports 3, 1778 (2013)

18

Ordinal analysis unveils new information

Same transition, hierarchical and clustered organization of the pattern probabilities

In another experiment: the same transition, hierarchy and clusters

Campus d'Excel·lència Internacional

75,000 – 880,000 spikes (different laser, new oscilloscope)

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)

LK model in good agreement with observations

Stronger feedback Low feedback 0,21 0.21 0.19 0,19 Probability 0.17 0.17 0.15 0,15 1.0 0.98 1.02 0.98 1.02 Pump current parameter, µ Pump current parmener, µ

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)

Can we find a minimal model that displays these features?

Modified circle map

Campus d'Excel·lència Internacional

Pump current (mA)

Minimal phenomenological model

Connection with neurons

Campus d'Excel·lència Internacional

The circle map describes many excitable systems (neurons)

The modified circle map has been used to describe spike correlations in biological neurons.

> Neiman and Russell, *Models of stochastic biperiodic* oscillations and extended serial correlations in electroreceptors of paddlefish, PRE 71, 061915 (2005)

How similar the spikes of lasers and neurons are?

Campus d'Excel·lència Internacional

Neuron Interspike Interval (ISI) histogram

FIG. 1. (a) An experimental ISIH obtained from a single auditory nerve fiber of a squirrel monkey with a sinusoidal 80dB sound-pressure-level stimulus of period $T_0=1.66$ ms applied at the ear. Note the modes at integer multiples of T_0 . Inset:

With direct current modulation, data recorded in our lab

A. Longtin et al, PRL 67 (1991) 656.

Response to periodic modulation

Campus d'Excel·lència Internacional

Relevant for understanding neuronal encoding of external stimuli

Experiments - minimal model comparison

Experiments @ 660 nm

Campus d'Excel·lència Internacional

Similar observations @ 1550 nm Interpretation: locking to external forcing

A valuable tool for identifying noisy locking

Campus d'Excel·lència Internacional

Probability of "10" 29.8from empirical data. 29.6Pump current (mA) Pump current: 29.4modifies the natural 29.2(unmodulated) spike rate 29

C. Masoller

Uncovering longer correlations

Part 1: Conclusions

- Underlying transition (012 \rightarrow 210) in the spiking laser output.
- Hierarchical and clustered organization of pattern probabilities.
- Good agreement with LK model.
- Minimal model identified. Robust under external forcing.
- Present work: can the laser be an "optical neuron"? Detailed comparison with neuronal models & real data.

What is a Rogue Wave?

Campus d'Excel·lència Internacional

A "monster wave", a "freak wave", an ultra-high wave.

(a) Hokusai's Great Wave (b) Breaking Wave in the Southern Ocean

Can develop suddenly even in calm and apparently safe seas.

Adapted from F. Dias (Dublin, Ireland)

RWs appear suddenly and vanish without a trace

Campus d'Excel·lència Internacional

A challenge for boats and also, for the oil and gas industry, for the design of safe off-shore platforms.

Source: National Geographic

Optically injected semiconductor lasers provide a controllable setup for the study of RWs

- Parameters:
 - o Injection ratio
 - Frequency detuning

- Regimes:
 - Stable emission
 - Periodic oscillations
 - o Chaos

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, "The dynamical complexity of optically injected semiconductor lasers," Phys. Rep. 216 (2005).

Instabilities in lasers with an injected signal

J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni

178 J. Opt. Soc. Am. B/Vol. 2, No. 1/January 1985

Experimental observation of extreme pulses in the laser output

Campus d'Excel·lència Internacional

RW definition: pulse above a <u>threshold</u> (<H> + 4-8 σ)

C. Bonatto et al, PRL 107, 053901 (2011).

- RWs can be deterministic, generated by a crisis-like process.
- RWs can be predicted with a certain anticipation time.
- RWs can be controlled via noise and/or modulation.
 - C. Bonatto et al, *Deterministic optical rogue waves*, PRL 107, 053901 (2011).
 - J. Zamora-Munt et al, *Rogue waves in optically injected lasers: origin, predictability and suppression,* PRA 87, 035802 (2013).
 - S. Perrone et al, Controlling the likelihood of RWs in an optically injected semiconductor laser via direct current modulation, PRA 89, 033804 (2014).
 - J. Ahuja et al, Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase, Optics Express 22, 28377 (2014).

Governing equations

- Complex field, E
- Carrier density, N

$$\frac{dE}{dt} = \frac{1}{2\tau_{p}} (1+i\alpha)(N-1)E + i\Delta\omega + \sqrt{P_{inj}} + \sqrt{2\beta_{sp}}/\tau_{N}\xi(t)$$

$$\frac{dN}{dt} = \frac{1}{\tau_{N}} \left(\mu - N - N|E|^{2} \right)$$

$$\frac{dN}{dt} = \frac{1}{\tau_{N}} \left(\mu - N - N|E|^{2} \right)$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial t} = \omega_{s} - \omega_{m}: \text{ detuning}$$

A simulated RW

Bifurcation diagram

Threshold: <H> + 8σ

A narrow channel: the RW "door"

40

Campus d'Excel·lència Internacional

A RW is triggered whenever the trajectory closely approaches the stable manifold of S2

Deterministic simulations

41

Why chaos with RWs and chaos without them?

An external crises-like process enables access to the region of phase space where the stable manifold of S2 (x) is.

Superposition of 500 time series at the RW peak

J. Zamora-Munt et al, PRA 87, 035802 (2013)

43

Role of noise: number of RWs vs (pump current, detuning)

Deterministic RWs (β_{sp} **=0)**

Stochastic simulations (β_{sp} =0.01)

White = No RWs

RW control in Point A (deterministic RWs)

Campus d'Excel·lència Internacional

$$\mu = \mu_0 + \mu_{\rm mod} \sin(2\pi f_{\rm mod} t)$$

Current modulation with appropriated amplitude and frequency completely suppresses RWs.

S. Perrone et al, PRA 89, 033804 (2014)

RW control in Point A: influence of noise

Campus d'Excel·lència Internacional

$$\mu = \mu_0 + \mu_{\rm mod} \sin(2\pi f_{\rm mod} t)$$

"safe parameter region" is robust to the presence of noise.

in Point B (no deterministic RWs)

Campus d'Excel·lència Internacional

"safe parameter region" also in point B, also robust to noise

Modulation suppressed RWs

Campus d'Excel·lència Internacional

Analogy: avalanche risk

Triggering controlled small avalanches avoids a large and dangerous avalanche.

When RWs are not suppressed: role of the modulation phase

Campus d'Excel·lència Internacional

RWs occur during the first ³⁄₄ of the modulation cycle.

J. Ahuja et al, Optics Express 22, 28377 (2014)

Summary part II

• **RW Control**: noise and modulation strongly affect the likelihood of RWs.

RW Predictability:

- RWs can be predicted with some anticipation.
- with modulation, they occur at certain values of the modulation phase.

Papers @ www.fisica.edu.uy/~cris

- C. Bonatto et al, PRL 107, 053901 (2011).
- J. Zamora-Munt et al, PRA 87, 035802 (2013).
- S. Perrone et al, Phys. Rev. A 89, 033804 (2014).
- J. Ahuja et al, Optics Express 22, 28377 (2014).

Taciano Sorrentino

Andres Aragoneses (now at Duke University, USA)

Carlos Quintero

Sandro Perrone (now at Leicester University, UK)

Carme Torrent

Ramon Vilaseca

Collaborators

Jatin Ahuja

Jordi Zamora

D. Bhiku

Indian Institute of Technology, Guwahati, Assam, India

THANK YOU FOR YOUR ATTENTION !

<cristina.masoller@upc.edu>

http://www.fisica.edu.uy/~cris/

Advertising: 3 open EU-funded PhD positions in our group.

International Year of Light 2015

