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 Analysis of sequences of events generated by 

complex systems:  
─ Intervals between threshold crossings and barrier crossings,  

─ Neurons: inter-spike intervals (ISIs), 

─ Human communication: inter-event user times (sms, emails, Twitters). 

─ Earth and climate: earthquakes, extreme events (tornados, rainfalls), etc.  

 Interplay of   
─ Nonlinearity, memory, stochastic effects 

─ Processes with different time scales 

─ High dimensionality 

 The identification of patterns in the sequence of 

events can allow for   
─ Model verification, parameter estimation 

─ Classification of different types of dynamical behaviors 

─ Improving predictability and forecasting 

 

 

Event level description of 

dynamical complex systems   
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 Semiconductor lasers with feedback as stochastic 

spiking high-dimensional complex systems 

 

 Method of time-series analysis and experimental setup 

 

 Experimental and model observations: signatures of 

determinism in the sequence of optical spikes + 

response to periodic forcing 

 

 Conclusions and take home message 

Outline 
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 SLs have many advantages:  

─ compact, fast, reliable, 

inexpensive 

─ wide range of wavelengths 

5 C. Masoller 

 Used in 

─ Telecommunications 

─ Data storage (CDs, DVDs, Blu rays) 

─ Barcode scanners, printers, mouse 

─ Material processing 

─ Biomedical applications (imaging, sensing, etc)  

 

Why semiconductor lasers? 
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 “solitary” semiconductor lasers emit a stable output 

intensity. 

 With optical feedback or injection: nonlinear oscillator. 

 Complex interplay of: 

─ Time delay  

─ noise 

─ nonlinearity 

6 C. Masoller 

that can be exploited for applications. 

Nonlinear dynamics 

Mirror 

 

Kathy Ludge: “Nonlinear Laser Dynamics: From Quantum Dots to Cryptography”, 

Wiley-VCH Verlag GmbH & Co. KGaA. (2012). ISBN: 3527411003 
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 Close to threshold, with optical feedback (self coupling) or 

with optical coupling (to another laser) the laser intensity 

displays optical spikes that can resemble neuronal spikes. 

Optical spikes 

with 

feedback 

without 

feedback 

Laser 

output 

intensity 

Pump current (mA) 
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─  to develop a method of time-series analysis that 

allows inferring signatures of determinism in the 

sequence of optical spikes;  

 

─ to extract new information; 

 

─  to compare model predictions with observations;  

 

─  to explore potential for building optical neurons. 

Goals 
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R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980) 

|E|2  photon number (output intensity) 

 

N  number of carriers (electron-holes) 
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 = feedback strength 

 = pump current parameter Gain: 

Stochastic and high dimensional dynamical system 



Model predictions 

 Depending on the 

parameters the 

dropouts can be a 

transient dynamics. 

A. Torcini et al, Phys. Rev. A 74, 063801 (2006) 

J. Zamora-Munt et al, Phys Rev A 81, 033820 (2010) 

Laser 

intensity 

 Burst of dropouts 

can be triggered 

by noise. 

 In experimental sequences of optical spikes: which ones 

are deterministic and which ones are triggered by noise? 

Laser 

intensity 
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 Main problem: we can measure only one “output” variable 

(the laser output intensity) 

 Also a problem: the measure system (photodiode, 

oscilloscope) has a finite bandwidth that gives a limited 

temporal resolution. 

Problems 

 Event-level description: we study the sequence of 

inter-dropout-intervals: Ti = ti+1 - ti 
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 Semiconductor lasers with feedback as stochastic 

spiking high-dimensional complex systems 

 

 Method of time-series analysis and experimental setup 

 

 Experimental and model observations: signatures of 

determinism in the sequence of optical spikes + 

response to periodic forcing 

 

 Conclusions and take home message 

Outline 
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 Many methods have been developed to test for 

determinism, nonlinearity and correlations in data 

generated from complex systems (climate, brain EEGs, 

financial data, social systems, etc). 

 

 The appropriateness of the method depends on the 

characteristics of the time series. 

 

 Different methods can provide complementary new 

information. 

 

 

Nonlinear time-series analysis 
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 The time series of Inter-Dropout-Intervals {T1, T2, …} is 

transformed (using an appropriated rule) into a sequence 

of symbols {s1, s2, …}  

 taken from an “alphabet” of possible symbols {a1, a2, …}.  

 Then we consider “blocks” of D symbols (“patterns” or 

“words”). 

 All the possible words form the “dictionary”. 

 Then analyze the “language” of the sequence of words 

- the probabilities of the words, 

- missing/forbidden words,  

- transition probabilities, etc 

Symbolic time-series analysis 
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 Proposed by Christoph Bandt and Bernd Pompe in 2002  
  

 It has been used to analyze data generated from complex systems 

- Financial, economical 

- Biological, life sciences 

- Geosciences, climate (Advertisement: Giulio Tirabassi’s talk, Friday, 11 hs, Room 1, MS 26) 

- Physics, chemistry, etc 

 

 It has been shown to be able to: 

- Distinguish stochasticity and determinism 

- Classify different types of dynamical behaviors (pathological, healthy) 

- Quantify complexity 

- Identify coupling and directionality. 

Ordinal analysis 
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Brandt & Pompe, Phys. Rev. Lett. 88, 174102, (2002). 



Ordinal analysis is becoming 

increasingly popular  
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J. M. Amigo, Permutation Complexity, Springer Series in Synergetics (2010) 

M. Zanin et al, Entropy 14, 1553 (2012) 

EPJST topical issue on permutation complexity (2013) 
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 A time series can be transformed into a sequence of 0s 

and 1s using the rule: 

 

 if xi > xi-1   si = 0; else si =1  

 

 “words” of D letters can be formed by considering the 

order relation between sets of D values {…xi, xi+1, xi+2, …}.  

 

 

Ordinal transformation 
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 For D=3, {…xi, xi+1, xi+2, …} there are 6 possible orders 

                012, 021, 102, 120, 201, 210 

 

 

  

  Example: the set (5, 1, 7) gives “102” because 1 < 5 < 7 

 

 

Ordinal Patterns (or “words”) 
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─ Advantage: the transformation keeps information about 

correlations in the sequence & does not need a threshold 

─ Drawback: does not keep information about the values 

(the set (5,1,100) also gives word “102”) 

 

 

 



 D! possible words in the dictionary. 

Number of possible 

ordinal patterns 

D=4 
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D=5 

 D! x D! possible transitions (pairs of 

consecutive words) in the language. 

C. Masoller 



 The optimal length of the pattern depends on 

 

─ The length of the time series (to compute words 

and transition probabilities with good statistics). 

 

─ The correlation time-scale of the system. 

How to select D? 
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What can we learn using 

ordinal analysis?  
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 Example: Logistic map, x(i+1)=4 x(i) [1-x(i)]  

 The word distribution 

has been used  to 

classify time-series, 

and to estimate model 

parameters. 



Classifying ECG-signals according 

to the appearance of words  
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(the probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set) 



Missing patterns: signature 

of determinism 
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Less stochastic 

J. Tiana-Alsina et al, Phil. Trans. Royal Soc. A 368, 367 (2010) 
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 Semiconductor lasers with feedback as stochastic 

spiking high-dimensional complex systems 

 

 Method of time-series analysis (ordinal patterns) 

and experimental setup 

 

 Experimental and model observations: signatures of 

determinism in the sequence of optical spikes + 

response to periodic forcing 

 

 Conclusions and take home message 

Outline 
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25 

Laser Diode 50/50 Beamsplitter  

External 

reflector 

Detector 
to Oscilloscope 

Temperature 

and pump 

current 

combi 

controller 

to Optical Spectrum 

Analizer 

External cavity - 45 cm 

Hitachi Laser Diode (HL6724MG) 

nm 

5mW 

~ 7% threshold reduction 
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Laser output 
(1 GHz 

oscilloscope) 

Ordinal analysis of time-series of 

inter-dropout intervals (IDIs) 

<T> = 100-200 ns 

 5 ns 

 

# of IDIs recorded 

45,000 - 220000 
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Inter-spike-interval distributions 
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 What new information can we obtain from the 

sequence of ordinal patterns (OPs) or “words” 

formed with consecutive IDIs? 

 

 Analogous to deciphering a foreign text. 

Is there any information in the 

sequence of optical spikes? 
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 Semiconductor lasers with feedback as stochastic 

spiking high-dimensional complex systems 

 

 Method of time-series analysis (ordinal patterns) and 

experimental setup 

 

 Experimental and model observations: signatures of 

determinism in the sequence of optical spikes + 

response to periodic forcing 

 

 Conclusions and take home message 

Outline 
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“language” analysis: “ordinal” 

experimental bifurcation diagram 

10 

01 

Consistent with stochastic 

dynamics at low pump 

current, but signatures of 

determinism at high pump 

current. 
N. Rubido et al, Phys. Rev. E 84, 026202 (2011) 

 

 

 

01 01 10 10 

Word Probabilities: 

11/06/2013 30 C. Masoller 



Transition probabilities 

1010, 1001 

0110, 0101 

Consistent with stochastic 

dynamics at low pump 

current, signatures of 

determinism at high pump 

current. 

 10  10     p 

 10   01   1-p 

 01  10     q 

 01   01   1-q 

4 possible 

transitions: 
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At low pump current: are the spikes 

fully random? 

A. Aragoneses, N. Rubido, J. Tiana, M. C. Torrent and C. Masoller, Scientific Reports (2013) 
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Also in another data set 
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Pump current  (mA) 

P-

1/2 
P-

1/6 

Pump current  (mA) 
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LIs 



Words constructed with 2 

consecutive LIs or SIs only 

─ Significant differences at 

high pump currents 

 

─ But at low pump currents, 

the events can not be 

classified in two types with 

significant differences. 

Pump current (mA) 
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A. Aragoneses, N. Rubido, J. Tiana, M. C. Torrent and C. Masoller, Scientific Reports (2013) 

P-

1/2 



T=18 C Similar results in the other 

dataset (T=20 C) 

Constructing the words with 

3 consecutive SIs or LIs 
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C. Masoller 

Sum LIs Sum SIs 

Statistics of the sum of 

consecutive SIs and LIs 

J. Zamora-Munt et al, PRA 2010 
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But at lower or at higher pump current: 

similar distributions of  LIs &  SIs 
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Influence of the threshold used 

to classify IDIs as LIs and SIs 

0.85 T* 

Error bars computed with a binomial test, gray 

region is consistent with null hypothesis 
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A. Aragoneses, N. Rubido, J. Tiana, M. C. Torrent and C. Masoller, Scientific Reports (2013) 

0.90 T* 

0.95 T* 



 LIs have statistical features as close as possible to random, 
noise-triggered events: 

─ the distribution of values decays exponentially 

─ the distribution of “words” is uniform. 

 

 There are enough consecutive LIs and SIs to compute the 
probabilities of the words with good statistics 

─ The null hypothesis (NH) region is narrow 

─ For the LIs, the error bars are in the NH region  

─ For the SIs, the error bars are out of the NH region. 

 

 For low pump currents we did not find a threshold that allowed 
to classify the dropouts in two significantly different categories. 

 

So how to chose the threshold? 
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Feedback =10 ns-1  

Model observations: “ordinal” 

bifurcation diagram 

Two clusters of words: (102 - 021) and (120 - 201) 

Model parameters (adjusted to fit mean IDI):  k=300 ns-1, n= 1 ns-1, =4, =0.01, =4.7 ns, sp=10-4 ns-1 
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12,000 – 40,000 dropouts 
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Feedback =20 ns-1  

P-

1/6 



Experiments Simulations 

Comparing experiments with 

simulations 
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Experiments Simulations 

In another data set: also the same 

hierarchy and clustering of words  
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75,000 – 880,000 dropouts 

(different laser, new oscilloscope) 
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Logistic map Tent map 

Can we find a minimal model displaying the 

same hierarchy and clustering of words?  
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Circle map 
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iiiX   1

 =ratio of the forcing period 

and the oscillator period 
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Minimal phenomenological model 
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Minimal model for electroreceptors of paddlefish: A. B. Neiman and D. F. Russell, PRE 71, 061915 (2005) 
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Influence of noise 

D=0 D=0.002 
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Response to periodic forcing 
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J. M. Buldú et al, Phys. Rev. E, 66, 021106 (2002) 
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Periodic forcing: ordinal 
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 We proposed a method to infer signatures of determinism in 

sequences of events in dynamical complex system. 

 The method is suitable for the analysis of high-dimensional 

stochastic systems displaying noise or deterministically 

induced events. 

 With an adequate threshold, events display significant 

different statistical features. 

 We found new symbolic states with an hierarchical and 

clustered organization of  patterns. 

 We found a good connection model-experimental data.  

 We also identified a minimal phenomenological model. 

Conclusions 
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 On going work is focusing on  

─ characterizing and classifying optical spikes 

(single and coupled lasers)  

─ comparing with biological neurons (via ordinal 

analysis of ISIs) 

 For the future:  

─ Excitable spikes in optically injected lasers 

─ Strong and weak chaos in feedback lasers 

 Potential breakthrough: optical neurons for neuro-

inspired information processing. 

Perspectives 
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 Ordinal analysis is a powerful technique for the event-level 
description of complex systems 

 

─  useful for data understanding and uncovering patterns in 
the sequence of events,  

 

─  useful for improving system modeling, model comparison 
and parameter estimation,  

 

─  useful for classifying different types of behaviors, 

 

─  potential for improving event predictability and forecasting. 
 

Take home message 
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You for your attention!  

11/06/2013 55 C. Masoller 

www.fisica.edu.uy/~cris 


