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Diffusion of information in Argentina
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 Six observed “nodes”:

Buenos Aires

Cordoba

Tucuman

Mendoza

Santa Fe

Santiago del Estero

 “Perturbation output”: 

# of articles in the press 

(20 topics)



 28000 news articles published in Argentina in the selected 

six main cities.

 4 months (26/05/2022 - 26/09/2022). 

 We used an unsupervised non-negative matrix factorization 

algorithm to classify the articles in 20 non-orthogonal topics.

Data analyzed
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S. Pinto, F. Albanese, C. O. Dorso, and P. Balenzuela. Quantifying time-dependent 

media agenda and public opinion by topic modeling. Physica A, 524:614, 2019



Examples of topics

Alberto Fernandez Avion Irani

Dolar

Sabag Montiel Diego Luciani Silvina Batakis

Sergio Massa

InflacionCristina Kirchner



We obtain a time series for each topic, by adding the 

total number of articles per day.



We also obtain a time series for each topic in each city

xn,i(t)

n=topic

i = city

t = time

(n=13)

෍

𝑛

𝑥𝑛,𝑖 𝑡 = 1

Normalized such that in 

each city, each day, the 

total “attention” is 1:



To define “events” in a time series we use two thresholds

TH1(n)=(n)=<xn,i(t)>i,t, TH2(n)=(n)+(n)
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Example: topic #1 “Alberto Fernandez”

Histogram of x1,i(t)
All cities, all times 4 events in BA

8 events in Santa Fe



Example: topic Combustible (n=4)
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1 event in BA

11 events in Santa Fe

• How to find “synchronized events”?

• How to detect when an event (a “perturbation”) in a 

city propagates and causes events in other cities?



 Count c (x|y) = number of times an event appears in x(t) 

shortly after (within interval =3 days) an event appears in y(t). 

Idem for c (y|x). Synchronized events count ½.

 Calculate: 

Qs = 2[c (x|y) + c (y|x) ] / [mx+my] 

Qa = 2[c (x|y) - c (y|x) ] / [mx+my]  

Event synchronization measures
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mx, my are the number of events in x(t) and y(t).

 Qs = 1 : the events of the signals are fully synchronized. 

 qa =1 : the events in x always occur before those in y.

 qa = -1 : the events in x always occur after those in y.

Quian Quiroga et al, PRE 66, 041904 (2002).

No “causal” information



Side note
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Example: topic “Alberto Fernandez” (n=1) 
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Mendoza  Santiago del Estero   C(4,6)=4.5

Santiago del Estero  Mendoza   C(6,4)=1.5



|Qa| and Qs 
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Qs = 2[c (x|y) + c (y|x) ] / [mx+my] 

Qa = 2[c (x|y) - c (y|x) ] / [mx+my]  



Let’s look at some examples
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n=2, Qs=1, Qa=1

n=6, Qs=1, Qa=0

n=8, Qs=1.1, Qa=0.4

n=6, Qs=0.67, Qa=0.67

n=8, Qs=0.5, Qa=0.5

n=13, Qs=0.72, Qa=0.08



C. W. J. Granger

past of 𝑋1
Residual 

error

𝑋2 → 𝑋1

Hypothesis: X1 and X2 can be described by stationary 

autoregressive linear models.

If ൻ ۧ𝐸′
1(𝑡) < ۦ ۧ𝐸1(𝑡)

C. W. J. Granger Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 37, 424–438 (1969) (> 10000 citations)

Granger Causality

𝑋1 𝑡 = ෍

𝑗=1

𝑝

𝐴11,𝑗 𝑋1 𝑡 − 𝑗 + ෍

𝑗=1

𝑝

𝐴12,𝑗𝑋2 𝑡 − 𝑗 + 𝐸′1(𝑡)

past of 𝑋1 past of 𝑋2
Residual 

error

𝑋1 𝑡 = ෍

𝑗=1

𝑝

𝐴11,𝑗 𝑋1 𝑡 − 𝑗 + ෍

𝑗=1

𝑝

𝐴12,𝑗𝑋2 𝑡 − 𝑗 + 𝐸1(𝑡)



 TE: is the Conditional Mutual Information, given the 

“past” of one of the variables.

Transfer Entropy (TE)
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TE (x,y) = MI (x, y|x)

TE (y,x) = MI (y, x|y)

 MI (x,y) = MI (y,x)  but TE (x,y)  TE(y,x)

 TE and GC are equivalent for Gaussian processes.

T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).



Problems of Grange Causality and TE
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Many alternative approaches to try to “solve” these problems.

X Y Z X
Y

Z
↕ ?

Indirect link XZ? Common driver

X. Ying et al.

AAAS Research 2022

Causality method 1 Causality method 2



Reminder



Preliminary results. Example topic “Diego Luciani”

GC and TE “significant”



Preliminary results. Example topic “Avion Irani” (n=2)

GC and TE “significant”
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Preliminary results. Example topic “Cristina Kirchner” (n=6)

GC and TE “significant”
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Preliminary results. Example topic “Combustible” (n=4)

GC and TE “significant”



Preliminary results: causal networks for all topics
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In topics that 

have no causal 

links (GC and/or 

TE is small), Qs 

and Qa are also 

small.



• The results obtained with event synchronization are promising 

but clearly, more study is needed on how to define the events.

• Some coincidences but also differences were found between 

event-synchronization links and causal links.

• Question: how to “prune” (binarize) to extract meaningful links?

Preliminary conclusions

Thanks to my collaborators.

Thank you for your attention!
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