Extreme pulses in optically injected semiconductor lasers: characterization, prediction, and control

Cristina Masoller

Departamento de Fisica Universitat Politecnica de Catalunya

Cristina.masoller@upc.edu

Campus d'Excel·lència Internacional

Extreme Waves, MPIPKS, Dresden, August 28, 2023

Semiconductor lasers play a crucial role in photonic technologies

- Inexpensive, compact, efficient
- Emit a wide range of wavelengths (optical communications, biomedical applications),
- Emit a wide range of powers (μWs-KWs).

Optically injected lasers are nonlinear dynamical systems

🔜 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Injection locking increases the modulation bandwidth; outside the locking region: intensity oscillations

E. K. Lau et. al, Opt. Express 16, 6609 (2008)

S-C Chan et. al, Optics Express 15, 14921 (2007)

In a narrow parameter region (outside the locking region): extreme pulses

C. Bonatto et al, PRL 107, 053901 (2011), Optics & Photonics News February 2012, Research Highlight in Nature Photonics DOI:10.1038/nphoton.2011.240

🔜 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

Questions

In our system:

- Which mechanisms induce extreme pulses?
- Role of noise?
- Can they be suppress?
- Can they be generated "on demand"?
- Can they be predicted?

Governing equations

Complex field, E –Laser intensity ~ |E|² Carrier density, N

These **OD** rate-equations provide good qualitative agreement with the observed intensity dynamics.

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Bifurcation diagram: in color code: log(# of pulses)

J. Zamora-Munt et al. PRA (2013).

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

To understand the mechanism underlying the extreme pulses we need to examine the location the three fixed points.

📩 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

An extreme pulse may be triggered when the trajectory closely approaches the stable manifold of S2 ("the door")

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

With a Poincare map (N=1) we see the expansion of the attractor when extreme pulses appear

J. Zamora-Munt et al. PRA (2013).

🔄 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Spontaneous emission noise can induce extreme pulses

$$\frac{dE}{dt} = \kappa (1 + i\alpha)(N - 1)E + i\Delta\omega E + \sqrt{P_{\text{inj}}} + \sqrt{D}\xi(t),$$

In color code the number of pulses

Pump current

 $Th = \langle I \rangle + 6\sigma$

S. Perrone et al., PRA (2014).

🔜 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Current modulation suppresses or induces pulses

 $Th = \langle I \rangle + 6\sigma$

S. Perrone et al., PRA (2014).

🔜 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

When extreme pulses are not suppressed by current modulation, their probability and amplitude depend on the phase of the modulation

J. Ahuja et al., Opt. Express 2014 Acknowledgments

The work was supported by grants FA9550-14-1-0359, FIS2012-37655-C02-01, FIS2011-29734-C02-01 and ICREA Academia; C. M. and J. Z. M. also acknowledge the Max Planck Institute for the Physics of Complex Systems, Advanced Study Group on Optical Rare Events.

📩 cristina.masoller@upc.edu 🈏 @cristinamasoll1

Can extreme pulses be generated ``on demand''?

T. Jin et al, Opt. Express (2017).

🛛 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Number of extreme pulses generated by 1000 perturbations as a function of the perturbation parameters: as large as 50% or as small as 5%

The "success rate" depends on the laser's parameters and on the perturbation parameters.

 $Th = \langle I \rangle + 8\sigma$

Are the generated pulses similar to "natural" ones?

📩 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Predictability?

Superposition of 50/500 time series at the peak of the pulse

How can this effect be quantified?

J. Zamora-Munt et al. PRA (2013).

🔄 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

We try to identify a "pattern" that occurs before the pulse

- Consider the sequence of intensity peak heights (red dots):
 {...I_i, I_{i+1}, I_{i+2}, ...}
- Possible order relations of three consecutive values:

We calculate the probability of these pattern before each extreme pulse:

If $I_i > TH$, we analyze the pattern defined by $(I_{i-3}, I_{i-2}, I_{i-1})$

"Good" results in deterministic simulations: P(201)=1 if TH >6

N. Martinez Alvarez et al., EPJST (2017).

🔄 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

The "early warning pattern" varies with the parameters and might not exist

Including noise, two modulation frequencies

🔜 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Analysis of experimental data

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Can the amplitude of the next pulse be predicted?

$$I_i = f(I_{i-n} \dots I_{i-3}, I_{i-2}, I_{i-1})$$

- Support Vector Machine (SVM), Linear and Gaussian
- Neural Networks (NN), Shallow and Deep
- k-Nearest Neighbors (KNN)
- Reservoir Computing (RC)

n = 3 yields minimum prediction error (increasing n does not increase the accuracy).

P. Amil et al., Chaos (2019)

Influence of the pump current and noise?

📩 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

Performance quantification: the mean absolute relative error

Summary

- In optically injected semiconductor lasers, extreme pulses can be deterministic, or triggered by noise, and can be suppressed or induced by current modulation.
- Extreme pulses can be generated "on demand" by a small perturbation of the pump current.
- The pulse amplitude can be predicted with good accuracy, even for extreme pulses that have very low probability.
- Future work: potential for sensing applications?
- Future work: the symbolic approach to predict extreme events needs to be further explored.

Co-authors: S. Barland, M. Giudici, J. R.Tredicce, J. R. Rios Leite, J. Zamora, S. Perrone, R. Vilaseca, P. Amil, M. C. Soriano, N. Martinez Alvarez, S. Borkar, J. Ahuja, D. Bhiku Nalawade, T. Jin and C. Siyu

Thank you for your attention!

🔜 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1