

Big data approach to optical complexity: investigating optical output signals with nonlinear data analysis tools

Cristina Masoller

Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

Extreme events in complex optical systems (EECOS)

Campus d'Excel·lència Internacional Buenos Aires, Argentina, December 2015

Dynamical optical complexity

Campus d'Excel·lència Internacional

Optical spikes

Semiconductor laser with optical feedback

Time

Extreme pulses

Semiconductor laser with injection

Time

Polarization switching
 VCSELs

Time

Optical turbulence

Fibre laser

Big data approach

- Optical systems allow recording long time-series under controlled conditions.
- With this "optical big data" we can
 - test novel analysis tools (prediction, control).
 - capture relevant features in the data (classification, model verification, parameter estimation).

Optical systems: three types of lasers

- Semiconductor lasers
 - Edge-emitting lasers (EELs)
 - Vertical-cavity (VCSELs)
- Fibre laser

L=1 km, millions of longitudinal modes

Method of time-series analysis: ordinal patterns

The OP probabilities allow to identify frequent patterns in the *ordering* of the data points

Random data \Rightarrow OPs are equally probable

- Advantage: the probabilities uncover temporal correlations.

- Drawback: we lose information about the actual values.

Example: the logistic map x(i+1)=4x(i)[1-x(i)]

Ordinal analysis provides complementary information.

Forbidden pattern

D=4 2 8 14 20 20 3 / 9 / 15 / 21 / 4 10 16 22 5 11 17 23 6 12 18 24

- How to select D? depends on:
 - The length of the data.
 - The length of correlations in the data.

Number of possible ordinal patterns: D!

D=5

- Ordinal analysis has been widely used to study the output signals of complex systems
 - Financial, economical
 - Biological, life sciences
 - Geosciences, climate
 - Physics, chemistry, etc
- It has been shown to be able to:
 - Distinguish stochasticity and determinism
 - Classify different types of behaviors
 - Quantify complexity
 - Identify coupling and directionality.

Example: classifying electrocardiography signals

Campus d'Excel·lència Internacional

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

(the probabilities are normalized with respect to the smallest and the largest value occurring in the data set)

First example: optical spikes in EELs with optical feedback

Campus d'Excel·lència Internacional

X= {... ΔT_i , ΔT_{i+1} , ΔT_{i+2} , ...} Time intervals between spikes

Error bars computed with a binomial test, gray region is consistent with $p_i=1/6 \forall i$.

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)

Minimal model for spike temporal correlations: modified circle map

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} \left[\sin(2\pi\varphi_i) + \alpha \sin(4\pi\varphi_i) \right]$$

$$X_i = \varphi_{i+1} - \varphi_i$$

- The circle map describes many excitable systems
- The modified circle map has been used to describe correlations in the spikes of biological neurons.

Neiman and Russell, *Models of stochastic biperiodic oscillations and extended serial correlations in electroreceptors of paddlefish*, PRE 71, 061915 (2005)

How similar optical spikes and neuronal spikes are?

Campus d'Excel·lència Internacional

Neuron Interspike interval (ISI) histogram

FIG. 1. (a) An experimental ISIH obtained from a single auditory nerve fiber of a squirrel monkey with a sinusoidal 80dB sound-pressure-level stimulus of period $T_0 = 1.66$ ms applied at the ear. Note the modes at integer multiples of T_0 . Inset:

With direct current modulation, data recorded in our lab

A. Longtin et al, PRL 67 (1991) 656.

Relevant for understanding neuronal encoding of external stimuli

Experiments - minimal model comparison

Experiments @ 660 nm

Campus d'Excel·lència Internacional

Modified circle map

Similar observations @ 1550 nm Interpretation: locking to external forcing

Electron. 21, 1801107 (2015).

Ordinal analysis: a valuable tool for identifying noisy locking

Campus d'Excel·lència Internacional

15

Ordinal analysis allows to uncover long correlations

Example 2: early warning of an abrupt transition

VCSEL polarizationresolved intensity when a control parameter varies (pump current)

Entropy computed from transition probabilities ('012' \rightarrow '012', etc.) in a sliding window of 500 data points.

C. Masoller et al, New J. Phys. 17 (2015) 023068

Three early-warning indicators

Campus d'Excel·lència Internacional

Entropy computed from the probabilities of the ordinal patterns

Entropy computed from the transition probabilities (TPs)

> Asymmetry coefficient computed from TPs

Example 3: laminar– turbulence regime transition in a fiber laser

A. Aragoneses et al, arxiv.org/abs/1505.07365

Unveiling specific time-scales

Uncovering spatio-temporal coherent structures

Example 4: extreme pulses in an injected semiconductor laser

C. Bonatto et al, PRL 107, 053901 (2011)

Injected semiconductor lasers provide a controllable setup for the study of RWs

Campus d'Excel·lència Internacional

• RW definition: pulse above a <u>threshold</u> ($<H> + 4-8 \sigma$)

- RWs can be deterministic, generated by a crisis-like process.
- RWs can be predicted with a certain anticipation time.
- RWs can be controlled via noise and/or modulation.
 - C. Bonatto et al, *Deterministic optical rogue waves*, PRL 107, 053901 (2011).
 - J. Zamora-Munt et al, *Rogue waves in optically injected lasers: origin, predictability and suppression,* PRA 87, 035802 (2013).
 - S. Perrone et al, Controlling the likelihood of RWs in an optically injected semiconductor laser via direct current modulation, PRA 89, 033804 (2014).
 - J. Ahuja et al, Rogue waves in injected semiconductor lasers with current modulation: role of the modulation phase, Optics Express 22, 28377 (2014).

Governing equations

- Complex field, E
- Carrier density, N

$$\frac{dE}{dt} = \frac{1}{2\tau_{p}} (1+i\alpha)(N-1)E + i\Delta\omega + \sqrt{P_{inj}} + \sqrt{2\beta_{sp}}/\tau_{N}\xi(t)$$

$$\frac{dN}{dt} = \frac{1}{\tau_{N}} \left(\mu - N - N|E|^{2} \right)$$

$$\frac{dN}{dt} = \frac{1}{\tau_{N}} \left(\mu - N - N|E|^{2} \right)$$

$$\frac{\partial \omega}{\partial \omega} = \omega_{s} - \omega_{m}: \text{ detuning}$$
Solitary laser
parameters: $\alpha \tau_{p} \tau_{N} \mu$

$$\frac{\partial \omega}{\partial \omega} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial \omega} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial \omega} = \omega_{s} - \omega_{m}: \text{ detuning}$$

$$\frac{\partial \omega}{\partial \omega} = \omega_{s} - \omega_{m}: \text{ detuning}$$

Threshold: <H> + 8σ

RWs can be suppressed by periodic modulation

$$\mu = \mu_0 + \mu_{\rm mod} \sin(2\pi f_{\rm mod} t)$$

S. Perrone, J. Zamora Munt, R. Vilaseca and C. Masoller, PRA 89, 033804 (2014)

Why RWs are suppressed?

Campus d'Excel·lència Internacional

Threshold = $\langle A \rangle + 6 \sigma$

RWs are suppressed because the pulses are high but NOT ultra high.

Analogy: avalanche risk

Campus d'Excel·lència Internacional

Controlled small avalanches in a snow-covered mountain reduce the amount of accumulated snow that could feed a large and dangerous avalanche.

When RWs are not suppressed: role of the modulation phase

Campus d'Excel·lència Internacional

RWs occur during the first ³⁄₄ of the modulation cycle.

The highest RWs occur just before the "safe" phase window.

J. Ahuja et al, Opt. Exp. 22, 28377 (2014)

J. Zamora-Munt et al, PRA 87, 035802 (2013)

RW predictability?

Take home message and present work

- Take home message:
 - When observing complex optical output signals, nonlinear tools might capture hidden relevant features in the data.
 - Optics provides "big data" for testing novel analysis tools.

• A few specific conclusions

- In VCSELs , "early warnings" of PS were inferred from data.
- In fiber lasers, long-range temporal correlations during the laminar-turbulence transition.
- With optical feedback, noisy locking detected; minimal model identified
- With optical injection, RWs were controlled via direct current modulation.

Present work:

Characterizing the performance of the analysis tools for anticipating

- extreme pulses and
- abrupt transitions.

Collaborators

Sandro Perrone

Jordi Zamora

Ramon Vilaseca

Taciano Sorrentino

Carlos Quintero

Jatin Ahuja

D. Bhiku

Nuria Martinez

Andres Aragoneses Carme Torrent

Experimental data from:

- VCSEL polarization-switching
 - Y. Hong (Bangor University, UK)
 - S. Barland (INLN, Nice, France)

Fibre laser data:

• Prof. Turitsyn' group (Aston University, UK)

Laura Carpi

THANK YOU FOR YOUR ATTENTION !

Campus d'Excel·lència Internacional

<cristina.masoller@upc.edu> http://www.fisica.edu.uy/~cris/

Publications:

- A. Aragoneses et al, Sci. Rep. 4, 4696 (2014).
- T. Sorrentino et al, Optics Express 23, 5571 (2015).
- T. Sorrentino et al, IEEE J. Sel. Top.
 Quantum Electron. 21, 1801107 (2015).
- C. Bonatto et al, PRL 107, 053901 (2011).
- S. Perrone et al, PRA 89, 033804 (2014).
- J. Ahuja et al, Opt. Exp. 22, 28377 (2014).
- C. Masoller et al, New J. Phys. 17, 023068 (2015).
- A. Aragoneses et al, arxiv.org/abs/1505.07365.
- Symbolic, ordinal bif. Diag.

Advertising:

- EU-funded PhD positions available.
- Going from 1D time-series to 2D complex images
- Goal: apply nonlinear analysis tools to biomedical images (classification & early warning signals of diseases)
- Anyone Interested? Contact me or apply via the webpage: <u>Beoptical.eu</u>

