Identifying and characterizing complex dynamical regimes with nonlinear time series analysis tools

Cristina Masoller

Universitat Politecnica de Catalunya

www.fisica.edu.uy/~cris

Campus d'Excel·lència Internacional

- Analysis tools (Ordinal & Hilbert)
- Applications:
 - -Lasers
 - Brain
 - Climate

(light brain storming)

How to extract information from complex signals?

First analysis tools: ordinal symbolic analysis

It allows to identify patterns in data

Campus d'Excel·lència Internacional

Ordinal analysis: a tool to look for patterns in data

- Consider a time series $x(t) = \{\dots x_i, x_{i+1}, x_{i+2}, \dots\}$
- Which are the possible order relations among three data points?

- Count how many times each "ordinal pattern" appears.
- Advantages: allows to identify temporal structures & is robust to noise.
- Drawback: information about actual data values is lost.

Bandt and Pompe PRL (2002)

Example: Logistic map

x(i+1) = r x(i)[1-x(i)]

Ordinal analysis yields information about more expressed and less expressed oscillation patterns in the data.

Ordinal analysis yields complementary information

Pattern 6 (210) is always forbidden; pattern 1 (012) is more frequently expressed as r increases

The number of patterns increases as D!

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Ordinal analysis can be used to transform a time series into a graph (weighted and directed)

Adapted from M. Small (The University of Western Australia) D! nodes

- Weigh of node i: the probability of pattern i
 (Σ_i p_i=1)
- Weight of the link i→j: probability of transition i→j (for each *i*: ∑_j w_{ij}=1)

Measures to characterize the graph

Entropy computed from node weights (permutation entropy)

$$s_p = -\sum p_i \log p_i$$

Average node entropy (entropy of the link weights)

$$s_n = \frac{1}{M} \sum_{i=1}^{M} s_i$$
 $s_i = -\sum_{j=1}^{M} w_{ij} \log w_{ij}$

Asymmetry coefficient: normalized difference of transition probabilities, $P('01' \rightarrow '10') - P('10' \rightarrow '01')$, etc.

$$a_{c} = \frac{\sum_{i} \sum_{j \neq i} \left| w_{ij} - w_{ji} \right|}{\sum_{i} \sum_{j \neq i} \left(w_{ij} + w_{ji} \right)}$$

(0 in a fully symmetric network;1 in a fully directed network)

A first test with synthetic data.

Ordinal patterns of length D=4.

The measures detect the merging of four branches, not detected by the Lyapunov exponent.

Analysis of laser empirical data: can we use the ordinal method to anticipate the polarization switching point?

No "early warning" should be possible if the mechanism that triggers the switching is fully stochastic.

Results

C. Masoller et al, NJP (2015)

Application: distinguishing eyes closed (EC) and eyes open (EO) brain states

BitBrain PhysioNet DTS1 DTS2 Sampling rate(Hz) 256160Time task(seg)12060 Total points 30720 9600 Number of electrodes 1664 Number of subjects 70109

 Symbolic analysis is applied to the raw data; similar results were found with filtered data using independent component analysis. Permutation entropy (top) and node entropy (bottom) PhysioNet dataset

"Randomization": the entropies increase and the asymmetry coefficient decreases

Time window = 1 s (160 data points) Ordinal patterns can be defined using a lag time between the data points (varying the effective "sampling time")

Example: el Niño index, monthly sampled

Analysis of the transition to optical turbulence in a quasi-cw Raman fiber laser

 1 km of normal dispersion fiber placed between two fiber Bragg gratings acting as cavity mirrors.

Turitsyna et al., Nat. Phot. (2013) Aragoneses et al., PRL (2016)

Ordinal probabilities vs. lag ("sampling time")

Can we find a minimal model that describes the ordinal probabilities at the transition?

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} \sin(2\pi\varphi_i) + D\xi$$

$$\{X_{i}, X_{i+1}, X_{i+2}, ...\}$$
$$X_{i} = \varphi_{i+1} - \varphi_{i}$$

Fiber laser data $\{I_i, I_{i+\tau}, I_{i+2\tau}, \ldots\}$ Synthetic data (phase increments) (at the transition, pump power 0.9 W) (K=0.23 & D=0.02) 0.22 0.3 0.2 Probabilities 0.25 **DP Probabilities** 0.18 0.16 0.14 Р 0.05 0.12 0 L 0 0.1^L 0.5 2.5 1.5 3 2 3 5 6 7 Frequency ratio p ω_{o}/ω_{ext} lag time (ns)

 $\tau = 2.5 \text{ ns} \Leftrightarrow \rho = 1 = v_0 \tau \implies v_0 = 1/\tau = 0.4 \text{ GHz}$

The Fourier spectrum is broadband but has a peak at ~0.4 GHz L. Carpi and C. Masoller, Phys. Rev. A 97, 023842 (2018)

Good agreement also at higher pump power

$$\phi_{i+1} = \phi_i + \epsilon \rho + (K/2\pi)\sin(2\pi\phi_i) + D\xi_i$$

 $\tau = 4.3 \text{ ns} \Leftrightarrow \rho = 2 = \nu_0 \tau \implies \nu_0 = 1/(2\tau) = 0.46 \text{ GHz}$

The spectrum has a peak at ~0.93 GHz, consistent with $2v_0$. L. Carpi and C. Masoller, Phys. Rev. A 97, 023842 (2018)

Second analysis tool: Hilbert analysis

It provides an instantaneous phase, amplitude and frequency for each data point of a scalar oscillatory time series

Campus d'Excel·lència Internacional

The Hilbert transform

Can we use the Hilbert amplitude, phase, frequency, to identify and quantify regional climate change?

- <u>A word of warning</u>: only if x(t) is a narrow-band signal a(t)and $\omega(t) = d\varphi/dt$ have clear physical meaning
 - -a(t) is the envelope of x(t)
 - $-\omega(t)$ is the main frequency in the Fourier spectrum
- Problem: climate time series are not narrow-band
- Usual solution (e.g. brain signals): isolate a narrow frequency band
- However, HT directly applied to surface air temperature uncovers the "hot spots" where changes in atmospheric dynamics are more pronounced.

The data: surface air temperature (SAT)

- Spatial resolution $2.5^{\circ} \times 2.5^{\circ} \Rightarrow 10226$ time series
- Daily resolution $1979 2016 \Rightarrow 13700$ data points

Where does the data come from?

- European Centre for Medium-Range Weather Forecasts (ECMWF, ERA-Interim).
- Freely available.
- <u>Reanalysis</u> = general atmospheric circulation model feed with empirical data, where and when available (data assimilation).

Features extracted from each SAT time series

- Time averaged amplitude, (a)
- Time averaged frequency, $\langle \omega \rangle$
- Standard deviations, σ_a , σ_ω

The map of time average frequency uncovers regions of fast frequency dynamics

Zappala, Barreiro and Masoller, Earth Syst. Dynamics (2018)

Phase dynamics: temporal evolution of the cosine of the Hilbert phase on a typical year

1 July

Relative decadal variations

$$\Delta a = \langle a \rangle_{2016-2007} - \langle a \rangle_{1988-1979}$$
$$\frac{\Delta a}{\langle a \rangle_{2016-1979}}$$

Relative variation is considered significant if:

$$\frac{\Delta a}{\langle a \rangle} \ge \langle . \rangle_s + 2\sigma_s \quad \text{or} \quad \frac{\Delta a}{\langle a \rangle} \le \langle . \rangle_s - 2\sigma_s$$

100 surrogates

- Decrease of precipitation: the solar radiation that is not used for evaporation is used to heat the ground.
- Melting of sea ice: during winter the air temperature is mitigated by the sea and tends to be more moderated.

Relative change of time-averaged Hilbert frequency consistent with a north shift and enlargement of the InterTropical Convergence Zone (ITCZ)

First ten years

Network of individual oscillators

Quantifying phase synchronization

 Kuramoto order parameter

$$r(t) = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j(t)} \right|$$

Steven H. Strogatz, Nature 2001

Quantifying synchronization in atmospheric data

Kuramoto param.

Take home message

- Symbolic analysis, Hilbert analysis and information theory measures are useful tools to understand complex signals.
- They provide complementary information.
- Ordinal analysis was used to identify regime transitions in laser data (polarization switching, optical turbulence) and in EEG data (eyes closed – eyes open)
- Hilbert analysis allowed us to identify changes (in the last three decades) in atmospheric data.
- Both analysis tools were applied directly to the raw data.

Dynamic Days LAC, Punta del Este, Uruguay 26--30 November 2018 (MS Time Series Analysis) https://ddayslac2018.org/

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Obrigada ! <cristina.masoller@upc.edu>

- Laura Carpi (*laser data*)
- Carlos Quintero, Carme Torrent (*brain data*)
- Dario Zappala, Marcelo Barreiro (*climate data*)

C. Masoller et al., New J. Phys. 17, 023068 (2015)
L. Carpi and C. Masoller, Phys. Rev. A 97, 023842 (2018)
D. A. Zappala et al., Earth Syst. Dynamics 9, 383 (2018)

Agència de Gestló d'Ajuts Universitaris i de Recerca

