

Inferring signatures of determinism in stochastic complex systems

Cristina Masoller

Universitat Politecnica de Catalunya, Terrassa, Barcelona www.fisica.edu.uy/~cris

A. Aragoneses, T. Sorrentino & M. C. Torrent

on Nonlinear Phenomena, LAWNP 2013, Villa Carlos Paz

Event level description of dynamical complex systems

Campus d'Excel·lència Internacional

- Sequences of events generated by complex systems
 - Intervals between threshold crossings and barrier crossings,
 - Neurons: inter-spike intervals (ISIs),
 - Human communication: inter-event user times (SMS, emails, Twitters).
 - Earth and climate: earthquakes, extreme events (tornados, rainfalls), etc.

Interplay of

- Different time scales, memory
- Nonlinear, high dimensional & stochastic effects
- The identification of patterns in the sequence of events can allow for
 - Model verification, parameter estimation
 - Classification of different types of dynamical behaviors
 - Improving predictability and forecasting

Outline

- Introduction: semiconductor lasers with feedback as highdimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

Why semiconductor lasers?

Campus d'Excel·lència Internacional

- SLs have many advantages:
 - compact, fast, reliable, inexpensive
 - wide range of wavelengths

Used in

- Telecommunications
- Data storage (CDs, DVDs, Blu rays)
- Barcode scanners, printers, mouse
- Material processing
- Biomedical applications (imaging, sensing, etc)

Nonlinear oscillator: optical spikes

Campus d'Excel·lència Internacional

 With optical feedback the laser intensity displays dropouts similar to neuronal spikes.

- Feedback delay time
- Noise
- Nonlineary

Pump current (mA)

(CONTROL PARAMETER)

Stochastic and high-dimensional system

- to develop a method of time-series analysis that allows inferring signatures of determinism in the sequence of optical spikes;
- to extract new information;
- to compare model predictions with observations;
- to explore potential for building optical neurons.

Laser

Governing equations

Campus d'Excel·lència Internacional

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980)

mirror

 $|E|^2 \sim \text{photon number (output intensity)}$

N ∼ number of carriers (electron-holes)

$$\frac{dE}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(G - 1)E + \eta E(t - \tau)e^{-i\omega_0\tau} + \sqrt{2\beta_{sp}}\xi$$

$$\frac{dN}{dt} = \frac{1}{\tau_N} \left(\mathbf{\omega} + N - G |E|^2 \right)$$

Gain:
$$G = N/(1 + \varepsilon |E|^2)$$

feedback noise

 η = feedback strength

 τ = feedback delay time

 μ = pump current

(control parameter)

Model predictions

Campus d'Excel·lència Internacional

 The dropouts are a transient dynamics.

 Burst of dropouts are triggered by noise.

In experimental sequences of dropouts: which ones are deterministic and which ones are stochastic?

A. Torcini et al, Phys. Rev. A 74, 063801 (2006)

J. Zamora-Munt et al, Phys Rev A 81, 033820 (2010)

Problems

Campus d'Excel·lència Internacional

- Main problem: we can measure only one relevant variable (the laser intensity)
- Also a problem: the measure system (photodiode, oscilloscope) has a finite bandwidth that gives a limited temporal resolution.

Approach: event-level description. We study the sequence of inter-dropout-intervals: ΔT_i = t_{i+1} - t_i

23/10/2013 C. Masoller 9

Outline

- Introduction: semiconductor lasers with feedback as highdimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

Symbolic ordinal analysis

Campus d'Excel·lència Internacional

- It has been used to analyze data generated from complex systems
 - Financial, economical
 - Biological, life sciences
 - Geosciences, climate
 - Physics, chemistry, etc
- It has been shown to be able to:
 - Distinguish stochasticity and determinism
 - Classify different types of dynamical behaviors (pathological, healthy)
 - Quantify complexity
 - Identify coupling and directionality.

Brandt & Pompe, Phys. Rev. Lett. 88, 174102, (2002).

Review by O. A. Rosso and co-workers, *Permutation Entropy and Its Main Biomedical and Econophysics Applications*, Entropy 14, 1553 (2012)

Ordinal Patterns (or "words")

Campus d'Excel·lència Internacional

- "words" of D letters can be formed by considering the order relation between sets of D values {...x_i, x_{i+1}, x_{i+2}, ...}.
- For D=3 there are 6 possible orders

Example: the set (5, 1, 7) gives "102" because 1 < 5 < 7

- Advantage: the transformation keeps information about correlations in the time-series & does not need a threshold
- Drawback: it does not keep information about the values, the set (5,1,100) also gives word "102".

23/10/2013 C. Masoller 12

Campus d'Excel·lència Internacional

Number of possible ordinal patterns: D!

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

- How to select D? Optimal D depends on:
 - The length of the time series.
 - The time scale of correlations.
- For optical spikes: D=2 (D=3) unveil correlations of 3 (4) spikes

Outline

- Introduction: semiconductor lasers with feedback as high-dimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

Experimental inter-dropout-intervals (IDIs in lasers – ISIs neurons)

Campus d'Excel·lència Internacional

Laser output (1 GHz oscilloscope)

 $<\Delta T> = 100-200 \text{ ns}$ $\tau \sim 5 \text{ ns}$

of IDIs recorded 45,000 - 220000

IDI distributions

Campus d'Excel·lència Internacional

Is there any **information** in the 'spike' sequence?

Analogous to deciphering a foreign text.

Outline

- Introduction: semiconductor lasers with feedback as highdimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

Correlations between 3 consecutive spikes: probabilities of 01 & 10

Campus d'Excel·lència Internacional

D=2: 3-spike correlations?

Null hypothesis: fully random sequence of spikes \Rightarrow P(01) = P(10)

N. Rubido et al, Phys. Rev. E 84, 026202 (2011)

Probabilities:

Consistent with stochastic at low pump current, but signatures of determinism at high pump current.

At low pump current: are the spikes fully random? New experiment

Campus d'Excel·lència Internacional

45000 - 220000 IDIs

A. Aragoneses, N. Rubido, J. Tiana, M. C. Torrent and C. Masoller, Scientific Reports (2013)

Also in another data set recorded at a different temperature (T=20 C)

Pump current (mA)

0.48

26.5

27

Are the deviations from the null hypothesis significant?

Campus d'Excel·lència Internacional

Recorded data

0.52 0.51 0.51 0.49

27.5

Pump current (mA)

28

28.5

Surrogated data

Which dropouts are noise-induced and which ones are deterministic?

Campus d'Excel·lència Internacional

We use a **threshold** to classify the inter-dropoutintervals as **short** and **long** intervals

Constructing the words with 2 consecutive SIs or LIs

Campus d'Excel·lència Internacional

- At high currents: significant differences
 - LIs consistent with random events
 - SIs more deterministic.
- But at low pump currents, the inter-spike-intervals can not be classified in two types with significant differences.

A. Aragoneses, N. Rubido, J. Tiana, M. C. Torrent and C. Masoller, Scientific Reports (2013)

Constructing the words with 3 consecutive SIs or LIs

Campus d'Excel·lència Internacional

At high pump currents an adequate threshold allows classifying the events in two distinct categories

23/10/2013 C. Masoller 25

Campus d'Excel·lència Internacional

Ordinal analysis unveils new information

There is a hierarchical and clustered organization of the probabilities of the words

Campus d'Excel·lència Internacional

In another experiment: also the same hierarchy and the same 2 clusters

75,000 – 880,000 dropouts (different laser, new oscilloscope)

Sensitivity to the threshold that defines the event times?

Campus d'Excel·lència Internacional

The hierarchy and the clusters are robust to the threshold chosen to define the spike times

Can we find a minimal model that displays these features?

A modified circle map: minimal phenomenological model

Campus d'Excel·lència Internacional

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} \left[\sin(2\pi\varphi_i) + \alpha \sin(4\pi\varphi_i) \right]$$

$$X_i = \varphi_{i+1} - \varphi_i$$

 ρ =0.23 K=0.04

Minimal model for electroreceptors of paddlefish: A. B. Neiman and D. F. Russell, PRE 71, 061915 (2005)

23/10/2013 C. Masoller 30

Outline

- Introduction: semiconductor lasers with feedback as highdimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

Periodic modulation of the laser current

Campus d'Excel·lència Internacional

Increasing the modulation amplitude

Experiment-model comparison

Campus d'Excel·lència Internacional

Experiments @ 660 nm

Similar observations @ 1550 nm

Minimal circle-map model

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} \left[\sin(2\pi\varphi_i) + \alpha \sin(4\pi\varphi_i) \right] + D\zeta$$

$$\rho$$
=-0.23 α =0.2 D=0.02

Outline

Campus d'Excel·lència Internacional

- Introduction: semiconductor lasers with feedback as highdimensional & stochastic dynamical systems
- Method of time-series analysis and experimental setup
- Results. Experimental and model observations: inferring signatures of determinism + response to periodic forcing
- Conclusions and take home message

23/10/2013 C. Masoller 34

23/10/2013

Conclusions

Campus d'Excel·lència Internacional

- We proposed a novel method to infer signatures of determinism in sequences of events in dynamical complex systems.
- Adequate for high-dimensional & stochastic systems displaying noise or deterministically induced events.
- We found new symbolic states with an hierarchical and clustered organization of the probabilities of the patterns.
- We identified a minimal phenomenological model.
- LK model is in good agreement with observations (not shown because lack of time)
- Potential breakthrough: optical neurons for neuro-inspired information processing.

C. Masoller

Take home message

Campus d'Excel·lència Internacional

- Ordinal analysis is a powerful technique for the event-level description of complex systems
- useful for data understanding and uncovering patterns in the sequence of events,
- useful for improving system modeling, model comparison and parameter estimation,
- useful for classifying different types of behaviors,
- potential for improving event predictability and forecasting.

icrea³⁶

23/10/2013 C. Masoller

Campus d'Excel·lència Internacional

You for your attention!

Taciano Sorrentino

Carme Torrent

Papers (@ www.fisica.edu.uy/~cris)

- J. Zamora-Munt et al, PRA 2010
- N. Rubido et al, PRE 2011
- A. Aragoneses et al, http://www.nature.com/srep/2013/130507/srep01778/full/srep01778.html

23/10/2013 C. Masoller

