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Henk Dijkstra (Universidad de Ultrech)

A complex system:



Complex network representation of the climate system

Donges et al, Chaos 2015

Back to the climate 

system: interpretation 

(currents, winds, etc.)

Nodes

Time series in 

each node

(e.g. air 

temperature)
Sim. measure 

+ threshold



How to select the threshold?
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 The number of connected components as a function of 

threshold reveals different  structures.

 But thresholding near the dotted lines indicates (inaccurately) 

that networks 1 and 2 have similar structures.

Giusti et al., J Comput Neurosci (2016) 41:1–14

Network 1

Network 2



How to “infer” significant 

interactions from observed data?

How to “reconstruct” the network?



 How to select the threshold?

 In “spatially embedded networks”, nearby nodes have the 

strongest links.

 How to keep weak-but-significant links?

 There are many statistical similarity measures to infer 

interactions from observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

A classification problem
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Sij > Th  Aij = 1, else Aij=0



Lagged |cross correlation|: 

Observed time series in nodes i and j: ai (t),  aj (t),  t=1, …,T

(each normalized =0, =1)

Goal: use a system with known connectivity to test the 

performance of statistical similarity measures

Statistical Similarity Measure: Sij = max ij () = ij (ij) 

ij in [0,max]

tjiij tata )()()(  
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tjiij tata )()()(  

ij

Sij = max ij()

(max)

Example



But the cross-correlation is a “linear” measure

9Source: wikipedia
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 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI value significant?  Analysis of surrogate data

 How to compute meaningful probability distributions? 

There are many options! Here: histogram of values 

(simple) and probabilities of symbols (symbolic analysis)

The Mutual Information: a nonlinear similarity measure
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p(x), p(y) and p(x,y) are probability distributions that 

characterize the time series ai (t) and aj (t)



 Consider a time series x(t)={…xi, xi+1, xi+2, …}
 Which are the possible order relations among three data 

points? 

Ordinal analysis: a  method to find patterns in data 

Bandt and Pompe PRL 88, 174102 (2002)

 Calculate ordinal probabilities by counting how many times 

each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



Example: logistic map
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expressed patterns in the data

)](1)[( )1( ixixrix 



Back to inferring underlying 

interactions from observed data 



K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      order parameter:
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Kuramoto model: globally coupled phase oscillators

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Kuramoto phase oscillators randomly coupled

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.

G. Tirabassi et al., “Inferring the connectivity of coupled oscillators from time-series 

statistical similarity analysis”, Sci. Rep. 5 10829 (2015).



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 
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We also analyzed experimental data recorded from 

12 Rössler electronic circuits (symmetric and randomly coupling)

The Hilbert Transform 

was used to obtain 

phases from the 

experimentally 

observed signals.
for various coupling strengths

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 



xj(t)

yj(t)=

HT[x]
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xj

yj 

a

The phase has clear physical meaning of 

rotation only if the signal is “narrow band”.

Time

Time

Hilbert Transform 

HT[cos ]=sin 
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Rossler

Example: Hilbert “reconstruction” of Rossler attractor
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Network reconstruction from experimental Rossler oscillators

Masoller 21

Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



Experimental data from 12 electronic Rossler circuits

How the similarity values and lag times depend on the 

coupling strength?
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N. Rubido and C. Masoller, “Impact of lag information on network

inference”, Eur. Phys. J. Special Topics 227, 1243-1250 (2018).

Link exists Link does not exist

tjiij txtx )()()(  

)(max ijijS 



Also for 50 randomly coupled Kuramoto oscillators
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Can we use lag-time information to infer the links?

Three possible rules:

The link i  j exists if

• SIM : only the first criterion holds (Sij > TH )

• AND: both criteria hold (Sij > TH and ij < TH )

• OR: at least one criteria holds (Sij > TH or ij < TH )

If Sij > TH the link i  j exists, otherwise, it does not exist

If ij < TH the link i  j exists, otherwise, it does not exist



To quantify how good these rules are we use the area

under the receiver operating characteristic (ROC) curve

SIM

AND

OR

Low threshold

High threshold



Uncoupled oscillators Coupled oscillators
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Governing equations:

Kuramoto phase oscillators
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N=50, Aij symmetric random 

matrix, 10% existing links            

Coupling strength, d

Order parameter K<1: the 

oscillators 

are not fully 

synchronized



Similarity measure

maximum of the cross-correlation of {ai=cos(i)} and {aj=cos(j)}

Coupling strength, d

All

Exist (Aij=1)

Not exist (Aij=0)

Coupling strength, d

ij () = cos(i(t)) cos(j(t+)

Is the lag information useful 

to infer which links exist 

and which do not exist?

I. Leyva and C. Masoller, “Inferring the connectivity of coupled oscillators and

anticipating their transition to synchrony through lag-time analysis”, submitted (2019)
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We compare three criteria using the Area Under ROC curve

Coupling strength

SIM AND ORThe link i  j exists if

SIM : Sij > TH 

AND: Sij > TH and ij < TH

OR: Sij > TH or ij < TH

AUC

I. Leyva and C. Masoller, “Inferring the connectivity of coupled oscillators and

anticipating their transition to synchrony through lag-time analysis”, submitted (2019)



28 electronic Rossler circuits, randomly connected

Results obtained from experimental data
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Data from: R. Sevilla-Escoboza & J. M. Buldu, Synchronization of networks of chaotic 

oscillators: Structural and dynamical data sets. Data in Brief 7 (2016) 1185–1189



 If we know the system’s connectivity, lag information 

seems to be useful to anticipate the transition to 

synchronization.

 If we don’t know the system’s connectivity, lag 

information is not useful to infer the links (but it can 

be useful to reduce some mistakes –the false 

positives or the false negatives). 

Summary first part
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Application to real data:

Identifying signatures of 

atmospheric waves



x(t)

y(t)=

HT[x]

Surface air 

temperature
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x

y 

a

Hilbert analysis was applied to 

the raw data (no pre-filtering).



Hilbert visualization of the seasons: temporal evolution 

of the cosine of the phase
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Cross-correlation analysis of Hilbert frequencies

identifies Rossby waves

D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying phase synchronization and 

unveiling Rossby wave patterns in surface air temperature dynamics”, submitted (2019)

Cross-

correlation in 

color code

ij = di/dt, dj/dt



Lagged-cross correlation
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ij () = di/dt, dj(t+)/dt

As expected, the wave pattern moves towards east

=0

= - 2 days = + 2 days



Clear wave pattern not seen in cross-correlation 

analysis of Hilbert amplitudes or anomalies
Cross-correlation 

in color code.
Anomalies Hilbert amplitudes

D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying phase synchronization and 

unveiling Rossby wave patterns in surface air temperature dynamics”, submitted (2019)



Take home messages

 Time series analysis allows to understand, predict and classify 

dynamical behaviors of  complex systems.

 The analysis of appropriated variables using statistical similarity 

measures can unveil real interactions.

 Even if the data does not meet the mathematical requirements, 

the results of time series analysis can give useful insights.

 Research field with many interdisciplinary applications.
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