Complex networks tools for investigating large-scale atmospheric phenomena

Cristina Masoller

Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

Mapping Complexity Foundations and Applications of Network Geometry MACFANG, Barcelona 2017

Complex network representation of the climate system

Back to the climate system: interpretation (currents, winds, etc.)

More than 10000 nodes.

Daily resolution: more than 13000 data points in each TS

Surface Air Temperature <u>Anomalies</u> (solar cycle removed)

Donges et al, Chaos 2015

Graphical representation: area weighted connectivity (weighted degree)

Barreiro, Marti, and Masoller, Chaos 21, 013101 (2011)

29/01/2018

Problem: the spatial embedding of the network

Due to the **physical** proximity, the links (defined via thresholding similarity measure cross correlation, mutual information) are mainly between neighboring nodes \Rightarrow long distance links are scarce.

 No direct North – South links.

0 45E 90E 135E 180E 135W 90W 45W

Cross correlation of surface air temperature anomalies (seasonal cycle removed)

29/01/2018

Link directionality (information transfer, Granger causality)

Campus d'Excel·lència Internacional

Deza, Barreiro, and Masoller, Chaos 25, 033105 (2015) Tirabassi, Masoller and Barreiro, Int. J. Climatol. (2014)

29/01/2018

How to identify geographical regions with similar climate? Campus d'Excel·lència Internacional

- Construct the climate network identify the communities.
- Regions with similar climate (rainforests, dry and arid regions, maritime regions, etc.) should belong to the same "community".

Problem: with "usual" network analysis the north and south hemispheres are only indirectly connected.

How to identify geographical regions with similar climate?

Our first approach: lag-times between seasonal cycles (correlation analysis of Surface Air Temperature)

G. Tirabassi and C. Masoller, Sci. Rep. 6:29804 (2016)

Rome

Buenos Aires

Geographical regions with synchronous (inphase) seasonal cycles

Campus d'Excel·lència Internacional

ARCELONATECH

AT POLITÈCNICA

- Six-month lag between the two hemispheres.
- Oceans have a one-month lag with respect to the landmasses

G. Tirabassi and C. Masoller, Sci. Rep. 6:29804 (2016)

- Lag-time between surface air temperature and the <u>isolation</u> (local top-of-atmosphere incoming solar radiation)
- computed by minimizing the distance between the time-series.

F. Arismendi, M. Barreiro and C. Masoller, Sci. Rep. 7, 45676 (2017)

Regions with inphase (synchronized) surface air temperature seasonal cycle

Lag between surface air temperature seasonal cycle and incoming solar radiation

F. Arismendi, M. Barreiro and C. Masoller, Sci. Rep. 7, 45676 (2017)

- Step 1: transform SAT anomalies in each node in a sequence of symbols (we use ordinal patterns)
 - $s_i = \{012, 102, 210, 012...\}$ $s_j = \{201, 210, 210, 012, ...\}$
- Step 2: in each node compute the <u>transition probabilities</u> $TP_{\alpha\beta}^{i} = \#(\alpha \rightarrow \beta)/N$
- Step 3: define the weights $W_{ij} = \frac{1}{\sum_{\alpha\beta} \left(TP_{\alpha\beta}^{i} TP_{\alpha\beta}^{j}\right)^{2}}$
- High weight if similar symbolic "language"
- Step 4: threshold *w*_{ii} to obtain the adjacency matrix.
- Step 5: run a community detection algorithm (Infomap).

Results

Campus d'Excel·lència Internacional

TP Network

Fourth method: synchronized phase dynamics

- Hilbert Transform of a real oscillatory signal.
- Allows to calculate, for each data point in the time series, the instantaneous
 Areality do o(t)

Amplitude a(t) Phase $\phi(t)$

Frequency w(t)=dp(t)/dt

HT[sin(ωt)]=cos(ωt)

Phase dynamics: cos(phase)

Comparison in the extra-tropics

Campus d'Excel·lència Internacional

Significance: 100 surrogates (anomaly TS or Hilbert TS), then use 3σ confidence level

Comparison in the El Niño region

Network of individual oscillators

Quantifying phase synchronization

 Kuramoto order parameter

$$r(t) = \left| \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j(t)} \right|$$

Steven H. Strogatz, Nature 2001

time [year]

Conclusions

- Different methods have been used to identify regions with similar climatic properties (climate communities).
- Hilbert analysis applied to raw data yielded light into phase dynamics and synchronization.

- High synchronization in the NH, lower in the SH, and no synchronization in the tropics.
- Ongoing work: predictive power?

Flash "extra bonus"

Campus d'Excel·lència Internacional

Original fundus image

Segmentation result

Filtered image

Network identification

- School on "Nonlinear Time Series Analysis and Complex Networks in the Big Data Era", co-organized with Jesus Gomez-Gardenes and Hilda Cerdeira ICTP-SAIFR (Sao Paulo): February 19 – March 2, 2018
- Workshop on "*Predicting transitions in complex systems*", co-organized with K. Lehnertz and J. Hlinka Max Planck Institute for Physics of Complex Systems (Dresden): 23 27 April 2018

THANK YOU FOR YOUR ATTENTION !

Campus d'Excel·lència Internacional

ARCELONA**TECH**

<cristina.masoller@upc.edu>

http://www.fisica.edu.uy/~cris/

G. Tirabassi and C. Masoller, "Unravelling the community structure of the climate system by using lags and symbolic time-series analysis", Sci. Rep. 6, 29804 (2016).

F. Arizmendi, M. Barreiro, C. Masoller, "*Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data*", Sci. Rep. 7, 45676 (2017).

D. A. Zappala, M. Barreiro, and C. Masoller, "*Global atmospheric dynamics investigated by using Hilbert frequency analysis*", Entropy 18, 408 (2016).

