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Optical spikes Neuronal spikes 

Similar processes generate these output signals? 

Similar statistics of inter-spike intervals?  

In our lab: experiments with 

semiconductor lasers 

Laser Mirror 



 Introduction 

• Motivation: spiking lasers 

that mimic neuronal 

behavior 

• Symbolic method of time-

series analysis 

 Results: 

• Analysis of optical spikes 

• Contrasting optical and 

neuronal spikes 

• Analysis of neuronal spikes  

 Summary  

Outline 
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Laser 

nonlinear 

dynamics 

Time-series 

analysis 

Single neuron 

response to 

external 

periodic input 



 

MOTIVATION 
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“a computer that is 

inspired by the brain.” 

 
Neuro-synaptic architecture 

allows to do things like image 

classification at a very low 

power consumption. 

Science 345, 668 (2014) 

• Spiking lasers: photonic 

neurons? 

• potential building blocks of 

brain-inspired computers. 

• Ultra fast ! (micro-sec vs. 

mili-sec) 



A. Longtin et al, PRL 67 (1991) 656 

Optical ISI distribution, data 

collected in our lab 

 

Neuron inter-spike interval (ISI) 

distribution 

when modulation is applied to the 

laser current 

HOW SIMILAR NEURONAL AND 

OPTICAL SPIKES ARE? 

Comparison of empirical data: 

neuron & optical spikes 
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A. Longtin IJBC 3 (1993) 651 

Optical ISIs Neuronal ISIs 

A. Aragoneses et al, Opt. Exp. (2014)  

M. Giudici et al, PRE 55, 6414 (1997) 

D. Sukow and D. Gautheir, JQE (2000)  



 In the spike rate?  

 

 In the relative timing of the spikes? 

 

 How temporal correlations can be detected and quantified? 

 

 Our goal: try to understand how a single neuron encodes a 

weak (subthreshold) periodic input. 

How neurons encode 

information? 



Inter-spike-intervals  

serial correlation coefficients 
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iii ttI  1inter-spike-intervals 
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HOW TO INDENTIFY TEMPORAL STRUCTURES?  

RECURRENT / INFREQUENT PATTERNS? 

However, correlation analysis detects linear relationships only 

Source: wikipedia 



Symbolic method of time-

series analysis 



 The time series {x1, x2, x3, …} is transformed (using an 

appropriated rule) into a sequence of symbols {s1, s2, …}  

 taken from an “alphabet” of possible symbols {a1, a2, …}.  

 Then consider “blocks” of D symbols (“patterns” or “words”). 

 All the possible words form the “dictionary”. 

 

 Then analyze the “language” of the sequence of words 

- the probabilities of the words, 

- missing/forbidden words,  

- transition probabilities,  

- information measures (entropy, mutual information, etc). 

Symbolic analysis 
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 if xi > xth   si = 0; else si =1 

 transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…} 

 

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3: 

 {011   100    001    011   111 …} 

 

 The number of words (patterns) grows as 2D 

Threshold transformation 

(phase space partition) 
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 Ordinal transformation (Bandt and Pompe PRL 88, 174102): 

 if xi > xi-1   si = 0; else si =1  

 also transforms a time-series into a sequence of 0s and 1s 

without using a predefined threshold. 

 

 “words” (Ordinal Patterns) are formed by considering the 

order relation between sets of D values. 

 

 D=3: {…xi, xi+1, xi+2, …}  

 

 The number of patterns grows as D! 

Alternative symbolic rule 
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Take home message: ordinal analysis can yield information about 

more expressed (and/or missing) patterns in the data. 

Example: the logistic map 

x(i+1)=r x(i)[1-x(i)] 
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Standard diagram Ordinal diagram 

Bifurcation diagrams 
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Xi 

Map parameter 



 Analysis of complex signals 

- Financial, Biomedical, Geosciences, Climate, etc 

 Able to: 

- Distinguish stochasticity and determinism  

- Classify different types of dynamical behaviors (pathological, healthy) 

- Quantify complexity, identify coupling and directionality, etc. 

 

 Here: correlations among 3 inter-spike-intervals (ISIs). 

Applications 
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210 012 



Ordinal analysis of optical spikes 

 
- temporal ISI correlations?  

- how do they vary with the control parameters? 

 



Transition to optical complexity 

10 

01 

Consistent with stochastic 

dynamics at low pump current, 

signatures of determinism at 

higher pump currents. 
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1010, 1001 

0110, 0101 

video 

https://www.youtube.com/watch?v=nltBQG_IIWQ&feature=youtu.be


Ordinal analysis allows to quantify the 

onset of different dynamical regimes 

C. Quintero-Quiroz et al,  “Characterizing how complex optical signals emerge from 

noisy intensity fluctuations”, Sci. Rep. 6 37510 (2016) 

Noise 

Low frequency fluctuations 
Coherence collapse 



Ordinal analysis allows to identify noisy 

entrainment to sinusoidal modulation 

T. Sorrentino et al, JSTQE 21, 1801107 (2015) 
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Time/Tmod 

 Ordinal probabilities identify 

regions of noisy locking 

2:1 

3:1 

TLFF  2 T mod 

4:1 



Contrasting empirical optical spikes 

with synthetic neuronal spikes 

 
- do they have similar ordinal statistics?  

- are there more/less frequent patterns? 

 



Ordinal analysis of ISI correlations in the 

region of low-frequency fluctuations 

Close to threshold Higher pump current 

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. 

Torrent and C. Masoller, Sci. Rep. 4, 4696 (2014)  

Grey region 

99.7% 

confidence 

level.  

Ordinal bifurcation diagram 

P =1 /6; N > 10,000 ISIs 



Comparison of linear and 

nonlinear ISI correlations 
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 C1 is always positive  

cross over (012 more/less 

probable than 210) is not 

detected. 

 C2 is very small, indicating 

no linear correlation 

between Ii and Ii+2 but 

ordinal probabilities are 

not consistent with equally 

probable patterns. 
 

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)  



Empirical laser data 
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Circle map data 

Minimal model of ISI nonlinear 

correlations: modified circle map 

=0.23, K=0.04, D=0.002 

iiiX   1

• Same “clusters” & same hierarchical structure. 

• Modified circle map: minimal model for ordinal correlations. 

• Same qualitative behavior found with other lasers & feedback conditions. 

 = natural frequency 

        forcing frequency 

K = forcing amplitude 

D = noise strength 

Lang-Kobayashi 

time-delay model 

Model equations and parameters: A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)  



 The circle map describes many excitable systems. 

 The modified circle map has been used to describe 

spike correlations in biological neurons. 

A. B. Neiman and D. F. Russell, Models of stochastic 

biperiodic oscillations and extended serial correlations in 

electroreceptors of paddlefish, PRE 71, 061915 (2005) 

 

 

Connection with neurons 
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Empirical laser data 

Modulation amplitude applied 

to the laser current (%) 
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FHN neuron model 

Gaussian white noise and subthreshold 

(weak) modulation: a0 and T such that 

spikes are only noise-induced. 
Time series with 100,000 ISIs simulated. 

T=20 

D=0.015 

FHN model 
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Empirical laser data 

Modulation amplitude applied 

to the laser current (%) 

 Good 

    qualitative 

    agreement. 

J. M. Aparicio-Reinoso et al, 

 PRE 94, 032218 (2016). 



Analysis of ISI sequences 

generated by FHN model 

 
- more/less frequent patterns encode information 

about subthreshold signal? 



FHN model: role of the noise 

strength 

a0=0 

a0=0.02 

T=10 

a0=0.02 

T=20 

• No signal  no noise-induced temporal ordering. 

• Subthreshold periodic input induces temporal ordering. 

• Preferred ordinal patterns depend on the period and on the 

noise strength. 

• Resonant-like behavior. 



Role of the modulation 

amplitude 

T=20 

D=0.035 
T=20 

D=0.015 

• The amplitude of the (weak) modulation does not 

modify the preferred and the infrequent patterns. 



Role of the modulation period 

a0=0.02 

D=0.015 
a0=0.02 

D=0.035 

Which is the underlying mechanism? A change of the spike rate? 

  No direct 

    relation. 

• More probable patterns depend on the period of the 

external input and on the noise strength. 



Length of ISI correlations 
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Relation between OPs and 

correlation coefficients C1 , C2 
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scatter plot with all data-points collapsed (varying 

noise strength, modulation amplitude and period) 

 

 clear trend with C2, no trend with C1 

P(012) 

P(210) 



Conclusions 



 Take home message:  
• ordinal analysis is useful for understanding data, uncovering patterns,  

• for model comparison, parameter estimation, classifying events, etc. 

• robust to noise and artifacts in the data. 

 Main conclusions 
• Optical & neuronal spikes compared: good qualitative agreement. 

• Minimal model for optical spikes identified: a modified circle map. 

• FHN model with subthreshold modulation and Gaussian white noise 
o There are preferred ordinal patterns which depend on the noise strength and on 

the period of the input signal, but not on (weak) amplitude of the signal. 

o resonance-like behavior: certain periods and noise levels maximize the 

probabilities of the preferred patterns, enhancing temporal order. 

 Open issues (ongoing and future work):  
• Hierarchical & clustered structure: universal feature of excitable systems? 

• Mathematical insight: can we calculate the probabilities analytically?  

• Role of coupling? induce preferred/infrequent patterns? (Maria’s talk) 

• Compare with empirical data (single-neuron ISI sequences) 

What did we learn?   
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THANK YOU FOR YOUR 

ATTENTION ! 

 Unveiling the complex organization of recurrent patterns in spiking 

dynamical systems 

     A. Aragoneses et al., Sci. Rep. 4, 4696 (2014). 

 Analysis of the spike rate and spike correlations in modulated 

semiconductor lasers with optical feedback 

T. Sorrentino et al., IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015). 

 Emergence of spike correlations in periodically forced excitable systems 

     J. A. Reinoso et al. Phys. Rev. E. 94, 032218 (2016). 

 Characterizing how complex optical signals emerge from noisy intensity 

fluctuations 

C. Quintero-Quiroz et al, Sci. Rep. 6 37510 (2016). 


