Image classification using collective modes of a two-dimensional array of photonic-crystal nanolasers

G. Tirabassi†, K. Ji‡, <u>Cristina Masoller</u>†, A. M. Yacomotti, †Departament de Física, UPC ‡Centre de Nanosciences et de Nanotechnologies, CNRS, France

Campus d'Excel·lència Internacional

Outline

Motivation

- Nanolaser array for binary image classification
- Model
- Data
- Machine learning optimization
- Results
- Discussion

Motivation

- Data centers, AI systems, HPC systems consume huge amounts of energy.
- Big concern in the context of climate change.
- Photonic computing systems can
 - Be much faster,
 - Consume much less energy.
- Semiconductor nanolasers have key advantages:
 - Ultra compact
 - Ultralow threshold
 - Room-temperature operation

European Centre for Medium-Range Weather Forecasts, Reading, UK

Nanolaser array for binary classification of low-resolution images

Key issue: good "spectral gap" Also important: spectral resolution of detection system Machine learning to find optimal parameters

Model

$$i\frac{da_{m,n}}{dt} = \kappa_x(a_{m-1,n} + a_{m+1,n}) + \kappa_y(a_{m,n-1} + a_{m,n+1}) + i(g_{m,n} - \gamma)a_{m,n}$$

Spatial pump pattern: $P = \{g_{m,n}\}$

Transformation matrix *M*: P = |M|; *I* it the matrix of pixel values.

- To demonstrate the idea we consider 8x8 identically diffusively coupled cavities.
- 64 rate equations for the complex amplitudes a_{mn}.
- Images re-sized to 8x8.
- A more realistic model (including detunings) is needed to obtain experimentally good classification (work in progress).
- Goal: find the 64 elements of M (optical pump P^(k)=|MI^(k)|, where I^(k) is the pixel matrix of the kth image) that optimize the classification performance.

Data

- Hand-written digit dataset freely available at University of California–Irvine (UCI) ML repository.
- 360 images.
- 75% (270 images) for training, 25% (90 images) for testing.
- 8x8 image resolution.

Machine learning optimization

Minimization of the cost function using images of training set.

$$C = -\sum_{k \in \{+\}} \tanh\left(\eta \Delta \varepsilon^{(k)}\right) + \sum_{k \in \{-\}} \tanh\left(\eta \Delta \varepsilon^{(k)}\right)$$

{+} and {-} denote the two sets of images for which the "spectral gap" of k*th* image $\Delta \varepsilon^{(k)}$ is expected to be + or -.

$$\Delta \epsilon^{(k)} = \max_{i: \left| \mathfrak{R}\left[\epsilon_{i}^{(k)} \right] \right| \le \delta} \mathfrak{I}\left[\epsilon_{i}^{(k)} \right] - \max_{i: \left| \mathfrak{R}\left[\epsilon_{i}^{(k)} \right] \right| > \delta} \mathfrak{I}\left[\epsilon_{i}^{(k)} \right]$$

- $\epsilon_i^{(k)}$ eigenvalues of Hamiltonian generated by image k.
- Selected modes have null or small real part.
- δ is a parameter that represents the spectral resolution of the experimental detection system.

Results

С

- Once the cost function was minimized using the images of the training set (about 24 hs on a 40 core cluster), the transformation matrix M obtained was used to classify the images of the training and testing sets.
- Two tasks: distinguish 0s and 1s (one-vs-one classifier) or distinguish 0s and any other digit (one-vs-all classifier).

			One-vs-one		One-vs-all
	Resolution	δ	10^{-3}	10^{-1}	10^{-1}
(TP+TN)/total	Accuracy (%)	Train Test	100 98.9	98.9 97.8	97.8 96.7
TP/predicted yes	Precision (%)	Train Test	100 100	100 100	97.7 97.9
TP/actual yes (fraction of 0s correctly identified)	Recall (%)	Train Test	100 98	97.6 96.1	97.7 95.8

cristina.masoller@upc.edu @cristinamasoll1

Role of noise in the input image

📩 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

10

Ongoing work

Discussion

- We have shown that an array of semiconductor nanolasers can be used to implement in hardware a photonic artificial neural network able to classify *low-dimensional* data.
- Performance close to the state of the art (a perceptron or a random forest can achieve nearly 100% accuracy).

Binary image classification using collective optical modes of an array of nanolasers 💷

