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 ESR9 (to be recruited) will develop semiconductor laser 

networks that mimic the information processing capabilities of 

small neuronal networks.  

 To be recruited may 2013 

 Supervised by C. Masoller, M. C. Torrent and J. Garcia Ojalvo 

Two fellows in WP4: ESR 9 & 

ESR 10 

 ESR10 (Maciej Jedynak) will model at a mesoscopic level 

neuronal activity.  

 Supervised by A. Pons and J. Garcia Ojalvo 

 A focus of the study will be the effect of noise and the 

relation with coordination malfunctions that modify normal 

patterns of synchronized behaviour, which in turn lead to 

neurological disorders. 

 



 ESR 9: From neuronal to photonic networks and back 

• Internship: Cairn 

• Secondments: CNR or UNOTT 

 

 ESR 10: Stochastic effects in neuronal tissue at the 

mesoscopic level 

• Internship: INRIA 

• Secondments: CNR 

Internships and secondments 



ESR9 

 Relating structural coupling with dynamical correlation in 
laser networks (Deliverable number 9.1, Month 30) 

 Information processing capabilities in lasers and neuronal 
networks (9.2, M48) 

 

ESR10 

 Understanding sources of noise in neural mass models 
(10.1, M10) 

 Ordering effects of random fluctuations at the mesoscopic 
level (10.2 M36) 

Tasks and deliverables 



 Characterize semiconductor lasers (SCLs) as optical neurons 
(first and second year) 

 

 Coupled lasers: neuro-inspired laser networks (3rd year) 

 

 Characterization of optical spikes and comparison with neuronal 
spikes via symbolic ordinal analysis.  

 

 Relating coupling directionality with dynamical correlation in laser 
networks via symbolic ordinal analysis (9.1, M30) 

 

 Quantifying information transmission (via a small modulation of 
the laser pump current) in coupled lasers (9.2, M48) 

 

 Explore the road back to neuronal networks 

 

 

ESR 9 time table and work plan 



 Experimental and numerical work will be carried out at the 

semiconductor laser laboratory in Terrassa, Barcelona 

 

 In collaboration with Andres Aragoneses, PhD student 

finishing his third year. 

 

 

ESR 9 lab 



Semiconductor lasers lab 



 Why semiconductor lasers? 

 

 Coupling schemes 

 

 Method of analysis: ordinal patterns 

 

 On going and future work 

 

 Concluding remarks 

Outline 



 Semiconductor lasers are compact, reliable and 
inexpensive. 

 

 Mainly used for fiber optics communications 
and optical data storage (CDs, DVDs). 

 

 Also in printers, bar-code scanners, sensors, 
etc. 

 

 Recent developments include Green and Blue 
lasers for applications in the life sciences (opto-
genetics, biomedical imaging, etc). 

Semiconductor lasers 



 “solitary” (free-running) semiconductor lasers emit a stable 
output intensity. 

 

 Under optical feedback (self coupling) or with optical 
coupling (to another laser) these lasers display various types 
of dynamical outputs, that can resemble neuronal spikes. 

 

 

 

 

 

 

 A range of coupling schemes provides access to different 
types of dynamical outputs. 

Semiconductor lasers 



    Optical  Injection 

Orthogonal Injection  

Rotator 

Optical Feedback 

Orthogonal feedback 

Two SCLs mutually coupled 

Orthogonal coupling 

Rotator 
Rotator 

 

 

Coupling schemes 

(Adapted from A. Gavrielides, AFOSR, US) 

Mirror 

Mirror 

Coherent coupling 

x0  x x(t-)  x 

 

x1  x2 

x0  y y(t-)  x 
y1  x2 

y2  x1 

Orthogonal coupling 



 

Two types of dynamical output 

 With coherent optical 

feedback or coupling: 

spikes 

 

 

 With orthogonal feedback 

or coupling: switching 

 



And also more complex behaviours 

Prof. Coombes’ presentation: Complexity, the NETT glue  



Optical spikes 

 

Mirror 

 

Laser output and detected spikes  
(J. Tiana PhD thesis, UPC 2011) 

Huge difference in the time scales of the 

“optical neuron” and of biological neurons 

5 orders of magnitude (ns vs ms) 

These setups induce a similar type of spiking optical output 



The spike rate can be controlled 

by the laser parameters 

Laser output for increasing pump current 

(adapted from J. Tiana PhD thesis, UPC 2011) 

This dynamics is 

explained by a 

simple laser model 

(stochastic delay 

differential rate 

equations) 
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Normalized standard deviation 

J. M. Mendez et al, PRE 2005 

Optical spikes: excitability 



Giacomelli et al, PRL 2000 

Marino et al, PRL 2002 

Optical spikes: coherence and 
stochastic resonance 



 Weak noise 

Optical spikes: bistability or noise-

sustained transient dynamics 

 Stronger noise 

A. Torcini et al, PRA 74, 063801 (2006) 



Two coupled lasers: lag-

synchronization 

T. Heil et al, PRL (2001) 

J. F. Martinez Avila and J. R. Rios Leite, 
Opt. Express (2009) 



Towards optical neural networks: 

three coupled lasers  

I. Fischer et al, PRL 2006 

M. W. Lee et al, JOSAB 2006 

I. Fischer et al, PRL 2006 

zero-time-lag synchronization 



Clustering in a small laser network 

C. Martinez, C. Masoller, M. C. Torrent and J. García Ojalvo, EPL 2007 



In these configurations (self-feedback or coupling) the 

laser spiking dynamics results from the interplay of 

 Intrinsic nonlinear light-matter interactions 

 Internal and external noise (optical, electrical, thermal, 

mechanical) 

 Time-delay effects (light propagation time) 

 

 We have a stochastic and high-dimensional complex 

system (the phase space is infinite due to the delay) 

Complex and stochastic dynamics 



 Main problem: we can measure only one “output” 
variable (the intensity) 

 

 Also a problem: the measure system (photodiode, 
oscilloscope) has a finite resolution bandwidth that 
gives low temporal resolution. 

Problems 

I. Fischer et al, PRL 1996 



To characterize the underlying dynamics and test for 

determinism and nonlinearity, the two popular 

approaches are 

 Phase-space reconstruction 

 Time-delay coordinates 

 Derivative coordinates 

 Symbolic analysis 

 Phase space partition 

 

They allow for model verification, forecasting, 

characterization, classification, etc. 

 

Time-series analysis 



 Ordinal analysis is a form of symbolic analysis that was 
proposed by Bandt and Pompe in 2002 (Phys. Rev. Lett. 
88, 174102). 

 

 It has been successfully applied to many complex systems 
(biological, physics, socio-economics, geoscience, etc) 
• To distinguish stochasticity and determinism 

• To classify dynamical behaviours 

• To quantify complexity 

 

 Suitable for event-level description of dynamical systems 
(e.g., for the analysis and classification of spike trains) 

 

Ordinal analysis 



 We consider a time series {x1, x2, x3, …} that 

describes a dynamical system 

 

 The time series is transformed (using an appropriated 

rule) into a sequence of symbols {s1, s2, …}  

 

 Which are taken from an “alphabet” of possible 

symbols {a1, a2, …}  

 

Symbolic analisys 



 Next we consider “blocks” of symbols (“patterns” 

or “words”) 

 All the possible words form a “dictionary” 

 And we can then analyze the “language” of the 

symbolic dynamics, i.e., 

• the probabilities of the words,  

• missing/forbidden words,  

• transition probabilities,  

• symbolic information measures (entropy, 

mutual information, etc). 

 

Symbolic words and “language” 



 Binary transformation. Consider a time series {x1, x2, x3, …}. 
The rule 

 

 if xi > xth   si = 0; else si =1 

 

 transforms the time-series into a sequence of 0s and 1s 

 

 Ordinal transformation. The rule 

 

 if xi > xi-1   si = 0; else si =1  

 

 also transforms the time-series into a sequence of 0s and 1s 

 

 

 

Examples 



Construction principle of ordinal 

patterns (OPs) of length D  

 

For D=2 there are only two 

possible directions from x1 to x2: up 

(pattern 01) or down (pattern 10) 

 

For D=3 there are 6 OPs: 



 For OPs of length D there are D! possible patterns 

Ordinal patterns 

D=4 

D=5 



Laser with feedback 

Without feedback 

Laser output 

IDI = Inter Dropout Interval (Ti) 

Ordinal analysis of optical 

spikes 
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Laser Diode 50/50 Beamsplitter  

External 

reflector 

Detector 
to Oscilloscope 

Temperature 

and pump 

current 

combi 

controller 

to Optical Spectrum 

Analizer 

External cavity - 45 cm 

Hitachi Laser Diode (HL6724MG) 

nm 

5mW 

~ 7% threshold reduction 



Statistics of the inter-dropout-

intervals 

Is there any information in the IDI sequence?  

(analogy with foreign text as in Prof. Russell’s presentation) 



“language” analysis: word probabilities 

10 

01 

Consistent with stochastic dynamics 

at low pumps, but signatures of 

determinism at higher pump currents 



“language” analysis: transition 

probabilities 

1010, 1001 

0110, 0101 

Consistent with stochastic dynamics 

at low pumps, but signatures of 

determinism at higher pump currents 



At low pump currents: inter-dropout-

intervals not fully random 

A. Aragoneses, et al submitted (2013) 

D=2 D=3 



Experiments Simulations 

Ongoing work: model comparison 



Ongoing work: spiking under the 

influence of a periodic forcing 

IDIs (in units of the 

modulation period) 

Histogram of inter-dropout-intervals 



Experiments Simulations 

P(10) 

P(01) 

TP(0110) 

TP(0101) 

TP(1010) 

TP(1001) 

OP probabilities and transition probabilities depend on 

the modulation amplitude (A) and frequency (f) 

Ongoing work: influence of 

forcing parameters 



 Ordinal analysis is a powerful technique for classifying 
different types of dynamics. 

 

 It allows inferring signatures of determinism and stochasticity. 

 

 Our goal is to use this tool for  

• characterizing and classifying optical spikes (single unit, 
coupled units) and  

• comparing with spikes of biological neurons (via ordinal 
analysis of inter-spike-intervals). 

 

 Potential application: building optical neurons for all-optical 
ultra-fast neuro-inspired information processing 

Concluding remarks 

Thank you for your attention! 


