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Where are we? 



Who are we? 

Research group on Dynamics, Nonlinear Optics and Lasers 



 Nonlinear phenomena in complex systems 

• Photonics (dynamics of lasers, nonlinear optics) 

• Biophysics (excitability, coupled oscillators) 

• Data analysis (climate time-series, biomedical images) 

What do we study? 



Climate and lasers?? 
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 Ocean rogue wave  

 

 

 

 Optical rogue wave  

Elevation of the sea surface (in meters) 

Extreme pulse in the output intensity of a diode laser 

 Optical systems allow recording long time-series under 

controlled conditions.  

 This allows testing novel analysis tools (prediction, 

classification, etc.). 



 Introduction 

• Climate dynamics 

• Symbolic method of 

time-series analysis 

 

 Results: networks 

• Inferring the network 

connectivity  

• Inferring climate 

communities 

 

 Summary  

Outline 
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Climate  

Dynamics 

Time-series 

analysis 

Complex  

networks 



Courtesy of  Henk Dijkstra (Ultrech University) 
25/03/2016 



 hours to 

days, 

 

 months to 

seasons,  

 

 decades to 

centuries, 

 

 and even 

longer... 

 

The climate system: a complex system 

with a wide range of time-scales 

25/03/2016 

An ‘‘artist’s representation’’ of the power 

spectrum of climate variability (Ghil 2002). 



 ENSO 

 The Atlantic multidecadal oscillation 

 The Indian Ocean Dipole 

 The Madden–Julian oscillation 

 The North Atlantic oscillation 

 The Pacific decadal oscillation 

 Etc. 

And a wide range of spatial 

modes of variability 
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25/03/2016 Bulleting of the American Meteorological Society 2006 10 



 Global warming 

Time-scale of our analysis: 

weather vs. climate 

25/03/2016 

Monte Perdido (Spain) 
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 weather = short-term variability 

 

 climate = long-term trend  
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Nature, February 2010 

Climate Modeling 

• Nowadays climate models capture many physical and 

biophysical processes.  

• BUT many “feedback loops” (e.g., due to human adaptation 

activity) are poorly understood and not represented in models. 

• Clear need of “data driven” studies. 

• Clear need of reliable high-resolution spatio-temporal data. 



 Methods of data analysis are dominated by linear thinking 

(example: expectations of continuity; extrapolation of trends). 

 

 BUT in complex systems nonlinear thinking is crucial! 

 Examples: accurate forecasts of critical transitions & extremes. 

The importance of being 

nonlinear 
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Bangladesh, Nature 2014 



Brain functional network 

25/03/2016 

Eguiluz et al, PRL 2005 

Chavez et al, PRE 2008 



Climate networks 

Donges et al, 

Chaos 2015 

Deza et al,  

Chaos 2013 

Area-weighted 

connectivity 

(weighted degree)  



Physical mechanisms responsible 

for teleconnections 
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Winds, ocean currents and solar forcing. 

http://www.aoml.noaa.gov 



Climate networks 

• CNs constructed from an interdependency/causality analysis of a climate 

variable. 

• Which climate variable? surface air temperature,  surface sea 

temperature, wind velocity, precipitation, etc. 

• Interdependency measure: usually cross-correlation or mutual 

information. 

• Causality measure: conditional mutual information or Granger estimator 

Regular grid 

2.5o x 2.5o  

 10226 nodes 

Xi(t) 

Xj(t) 
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Brain network Climate network 
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In each of the 10226 nodes 700 data points (60 years x 12 months) 
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Time (months) 

Time (months) Time (months) 

Anomalies = annual solar cycle removed 

The data: monthly surface air 

temperature (SAT) 1949-2013 

How does the data look like? 



 National Center for Environmental Prediction, National 

Center for Atmospheric Research (NCEP-NCAR).  

 

 Freely available. 

 

 Reanalysis = run a sophisticated model of general 

atmospheric circulation and feed the model (data 

assimilation) with empirical data, where and when available.  

 

 This process restricts the solution of the model to one as 

close to reality as possible in regions/times where there are 

data available, and to a solution physically “plausible” in 

regions/times where no data is available. 
20 

Where does the data come from? 
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Our analysis:  

nonlinear in three aspects 

   We use a nonlinear measure to quantify ‘statistical 

interdependency’ between the climate in different regions. 

 

 

 

 We use a threshold to select the significant Mij values 

(contrasting Mij values obtained from original time-series 

with Mij values obtained from surrogates). 

 

 We use symbolic time-series analysis (ordinal patterns) 

to compute the probabilities. 



Method of symbolic time-series 

analysis: ordinal patterns 

─ Advantage: the probabilities uncover temporal correlations. 

 X= {…xi, xi+1, xi+2, …}  

The OP probabilities allow to identify frequent 

patterns in the ordering of the data points 

Brandt & Pompe, PRL 88, 174102 (2002) 

Random data 

 OPs are 

equally probable 

─ Drawback: we lose information about the actual values. 

1 2 3 4 5 6 
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Example: the logistic map 

x(i+1)=4x(i)[1-x(i)] 
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Ordinal analysis provides 

complementary information. 



Intra-
season 102 

 

Intra-
annual 012 

 

Inter-
annual 120 
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Ordinal analysis allows selecting 

the time scale of the analysis 



Graphical representation of the 

climate network 

high 

connectivity 

low 

connectivity 

J. I. Deza, M. Barreiro and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 

Network obtained with ordinal analysis using 

inter-annual time-scale (3 consecutive 

years).  The color-code indicates the Area 

Weighted Connectivity (weighted degree)  
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El Niño/La Niña-Southern Oscillation 

(ENSO) 

 
Is the most important climate phenomena on the planet 

 

 Occurs across the tropical Pacific Ocean  with  3-6 

years periodicity.  

 Variations in the surface temperature of the tropical 

eastern Pacific Ocean (warming: El Niño, cooling: 

La Niña)  

 Variations in the air surface pressure in the tropical 

western Pacific (the Southern Oscillation).  

 These two variations are coupled:  

• El Niño (ocean warming)  -- high air surface pressure, 

• La Niña (ocean cooling)   --  low air surface pressure. 



Oct.-Nov. 2015: how ocean surface 

temperature differed from average 
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A few examples: 

 Extra rainfall in South America: malaria outbreaks. 

 Devastating forest fires in Indonesia. 

 Dry conditions in South Africa: stress in water availability. 

 Enhanced hurricane season in the Pacific. 

 etc. etc. etc. 

 

A lot of work to forecast El Niño evolution and to design 

mitigation/adaptation strategies. 

El Niño has huge impact 

world-wide 

25/03/2016 28 



Network when the probabilities are 

computed with ordinal analysis 

Network when the probabilities are 

computed with histogram of values 
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Contrasting two methods for 

inferring the climate network 



Who is connected to who? 

color-code indicates the MI 

values (only significant values)  

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 

AWC map 



Influence of the time-scale of 

the symbolic ordinal pattern 
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Longer time-scale  increased connectivity 



How do we assess the 

significance of the links? 

Original data 

Surrogated 

 
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PDF MI values 

99.87% confidence level that the links have MI 

values that are not consistent with random values. 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 



Low threshold High threshold 

Are the links significant? 

Influence of the threshold 

(3% link density) 

Color code: 

MI 

Color code: 

AWC 

(11% link density) 



 Ixy(): conditional mutual information 

 : time-scale of information transfer 

 D: net direction of information transfer 

How to improve climate 

predictability?  

Computed from daily SAT anomalies, PDFs estimated from histograms of values.  

MI and DI are both significant  (>3, bootstrap surrogates), =30 days. 

 

                                                         Deza, Barreiro and Masoller, Chaos 25, 033105 (2015) 

Assessing the directionality of the links 

x → y 

x → z  
y  z ??  

MI 
DI 



Time-scale of interactions 
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=1 day =3 days 

=7 days 

=30 days 

Link directionality reveals wave trains propagating from west to east 

 Deza, Barreiro and Masoller, Chaos 25, 033105 (2015) 



Can we test the method used 

to built the climate network? 



Kuramoto oscillators in a 

random network 

Phases () CC  MI  MIOP 

Aij is a known 

symmetric random 

matrix;  

N=12 time-series, each 

with 104 data points. 

“Observable” Y=sin() 

True positives False positives True positives False positives 

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions. 

For each K, the threshold was varied to obtain optimal reconstruction. 



Instantaneous frequencies (d/dt) 

 

CC  MI  MIOP 

Perfect network inference is possible!  

BUT  

• the number of oscillators is small (12),  

• the coupling is symmetric (   only 66 possible links) and 

• the data sets are long (104 points) 

G. Tirabassi et al, Sci. Rep. 5 10829 (2015)  



Correlation analysis of two 

UNCOUPLED oscillators (K=0) 
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Why does CC outperforms MI? Why instantaneous 

frequencies are better than 

phases and “observables”? 

Phases   

Y=sin() 

d/dt 

Link number 



Correlation analysis 
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Gap in agreement with previous analysis  

with chaotic maps (e.g. logistic map) 

N. Rubido et al, New J. Phys. 16 (2014) 093010 

Mutual information analysis 

• Dashed: =0 

• Squares (green/black): =0.5 

• Circles (red/ black): =0.06 

• Perfect reconstruction possible for =0.06, but wider gap with MI  
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling) 

The Hilbert Transform 

was used to obtain 

phases from 

experimental data 

Experiments by J. Buldu & R. Sevilla-Escoboza. 
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Results obtained with 

experimental data 

25/03/2016 Masoller 43 

Observed variable (x)  

Hilbert phase  

Hilbert frequency 

CC  MI  MIOP 

• No perfect 

reconstruction 

 

• No important 

difference 

found among 

the 3 methods 

& 3 variables 



Ongoing work: application of Hilbert 

transform to climate data 
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SAT raw data 

Hilbert transform 

Hilbert frequency 

Time (months) 

Time-averaged Hilbert frequency 



Contrasting (again) two methods for 

inferring the climate network 
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Network constructed from 

correlation analysis of SAT  

anomalies 

Network constructed from 

correlation analysis of 

Hilbert frequencies 



 Goal: to construct a network in 

which regions with similar climate 

(e.g., continental) are in the same 

“community”. 

 

 Problem: not possible with the 

“usual” method to construct the 

network because NH and SH are 

only indirectly connected. 

25/03/2016 46 

Climate “communities” 

How to identify regions with similar climate? 



 Step 1: transform SAT anomalies in each node in a sequence 

of symbols (we use ordinal patterns) 

         si = {012, 102, 210, 012…}        sj = {201, 210, 210, 012, …} 

 

 Step 2: in each node compute the transition probabilities 

      TP i = #(→)/N 

 

 Step 3: define the weights 

 

 Step 4: threshold wij to obtain the adjacency matrix. 

 

 Step 5: run a community detection algorithm (Infomap). 

 

Network construction based on 

similar symbolic dynamics 
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if similar 

symbolic 
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Results 
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TP Network CC Network (only the largest 16) 



 Introduction 

 

 Results 

 

 Summary 

Outline 
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 Take home message:  

The network approach provides an opportunity for improving our 

understanding of climate phenomena. 

The Challenge: can we use networks to improve climate predictability? 

 

 A few specific conclusions: 

• Ordinal analysis allows identifying climate communities and time-scales 

of climate interactions. 

• Conditional mutual information allows identifying net direction of climate 

interactions. 

• In small synthetic networks, under appropriate conditions, perfect 

network inference is possible. 

• The similarity method to be used (CC or MI) and the variable to be 

analyzed, for optimal network reconstruction can depend on the system 

(not the same for Kuramotos, logistic maps, or electronic circuits). 

What did we learn?   



 In climate data, is there relevant information in Hilbert phases 

and frequencies? 

 Are there favored / infrequent symbolic patterns in the climate 

dynamics?  

 Potential for advancing sub-seasonal predictability?  

Ongoing and future work 

 Time-series  network,  

Potential for predicting El Niño 

“symbolic” dynamics? 

M. Small, Univ. W. Australia 



 Dissimilarity measure to quantify time-evolution of climate 

network: potential for uncovering climate regime transitions? 

Ongoing and future work 

 Multilayer networks (Granger 

causality analysis of air-ocean 

interactions in the South 

America Convergence Zone –

SACZ) 

SAT 

SST, pressure, wind, precipitation, etc. 



 Ignacio Deza 

 

 Giulio Tirabassi 

 

 Dario Zappala 

 

 Marcelo Barreiro, Nicolas Rubido, and Arturo 

Martí (Universidad de la República, Uruguay) 

 

 Experiments with chaotic electronic circuits: 

Javier Buldu (Technical University of Madrid), 

Ricardo Sevilla-Escoboza (Universidad de 

Guadalajara, Mexico) 

 Coupled maps: Celso Grebogi and Murilo 

Baptista (University of Aberdeen) 

Collaborators & funding 
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<cristina.masoller@upc.edu>  

 

Papers at: http://www.fisica.edu.uy/~cris/ 

 

THANK YOU FOR YOUR 

ATTENTION ! 
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