Predicting Extreme Optical Pulses in Laser Systems

Cristina Masoller

Universitat Politecnica de Catalunya

Cristina.masoller@upc.edu

Campus d'Excel·lència Internacional

Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications (RANDCoST) Oldenburg, Germany, May 2017

Calcutta, February 2016

Ulrike's work: a great source of inspiration!

Snowbird, May 2017

What is a Rogue Wave?

Campus d'Excel·lència Internacional

A "monster wave", a "freak wave", an ultra-high wave.

(a) Hokusai's Great Wave (b) Breaking Wave in the Southern Ocean

Can develop suddenly even in calm and apparently safe seas.

Adapted from F. Dias (Dublin, Ireland)

Rogue waves appear suddenly and vanish without a trace

Campus d'Excel·lència Internacional

A challenge for boats and also, for the oil and gas industry, for the design of safe off-shore platforms.

Source: National Geographic

Extreme events in nature

Campus d'Excel·lència Internacional

Optical systems generate "big data" and provide an opportunity to understand extreme events & advance their predictability.

Campus d'Excel·lència Internacional

Semiconductor lasers (diode lasers)

Widely used, inexpensive but easily perturbed

 Optically perturbed semiconductor lasers provide an inexpensive setup to study chaos and nonlinear dynamics.

Deterministic Optical Rogue Waves

Cristian Bonatto,¹ Michael Feyereisen,² Stéphane Barland,² Massimo Giudici,² Cristina Masoller,¹ José R. Rios Leite,^{2,3} and Jorge R. Tredicce^{2,3}

In our system, optical rogue waves can be

- deterministic, generated by a crisis-like process.
- controlled by noise and/or by current modulation.
- predicted with a certain anticipation time.

Governing equations

Campus d'Excel·lència Internacional

- \circ Complex field, E –Laser intensity ~ $|E|^2$
- Carrier density, N

These simple rate-equations provide good qualitative agreement with the experimentally observed intensity dynamics.

Bifurcation diagram in color code: log(number of pulses)

Campus d'Excel·lència Internacional

Campus d'Excel·lència Internacional

J. Zamora-Munt et al, PRA 87, 035802 (2013)

What triggers a RW?

Campus d'Excel·lència Internacional

A RW is triggered whenever the trajectory closely approaches the stable manifold of S2 (the "RW door")

Rogue wave predictability

Campus d'Excel·lència Internacional

J. Zamora-Munt et al, PRA 87, 035802 (2013)

UNIVERSITAT POLITÈCN A similar effect in the intensity dynamics BARCELONATECH Campus d'Excel·lència Internacional

Superposition of 52 pulses

Campus d'Excel·lència Internacional

Narrow channel also seen in other systems (G. Ansmann, R. Karnatak, K. Lehnertz, and U. Feudel, PRE 88, 052911 2013)

How can this effect be quantified?

Symbolic method of time-series analysis: Ordinal Patterns

Campus d'Excel·lència Internacional

Example: (5, 1, 7) gives "102" because 1 < 5 < 7

D=4 1 7 13 19 D=5: 1 8 14 20 D=5: 1 9 15 21 Permut 10 16 22 Alterna 12 18 24 4 $\ldots X_{j}$, X

D=5: 120 patterns Permutation entropy $s_p = -\sum p_i \log p_i$

Alternative: use a <u>lag</u> {... x_i , x_{i+1} , x_{i+2} , x_{i+3} , x_{i+4} , x_{i+5} ...}

Ord. Patt. label

Brandt & Pompe, PRL 88, 174102 (2002)

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Example of application of ordinal analysis

- temporal ISI correlations among optical spikes?

- how do they vary with the control parameters?

Campus d'Excel·lència Internacional

Ordinal analysis allows to quantify the onset of different dynamical regimes

Campus d'Excel·lència Internacional

C. Quintero-Quiroz et al, "Characterizing how complex optical signals emerge from noisy intensity fluctuations", Sci. Rep. 6 37510 (2016)
M. Panozzo et al, in preparation (2017)

Map of dynamical regimes vs pump current & feedback strength

Campus d'Excel·lència Internacional

Campus d'Excel·lència Internacional entrainment to sinusoidal modulation

Using ordinal analysis to quantify the predictability of extreme pulses

Campus d'Excel·lència Internacional

- Consider the sequence of intensity peak heights (red dots):
 {...I_i, I_{i+1}, I_{i+2}, ...}
- Possible order relations of three consecutive values:

We calculate the probability of the pattern that occurs before each high pulse:

If $I_i > TH$, we analyze the pattern defined by $(I_{i-3}, I_{i-2}, I_{i-1})$

Campus d'Excel·lència Internacional

Results: deterministic simulations

Model and parameters as in J. Ahuja et al, Optics Express 22, 28377 (2014).

Including spontaneous emission noise and current modulation

Campus d'Excel·lència Internacional

In the first case: 210 is a "good" warning. \Rightarrow "early warning pattern" varies with parameters and might not exist.

Analysis of experimental data (Nice)

Campus d'Excel·lència Internacional

Experimental data (Terrassa): optical feedback-induced dropouts

Campus d'Excel·lència Internacional

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

⇒ 012 is the most probable pattern before a spike; 210 is the less expressed pattern

- In synthetic data: certain patterns of oscillations can be more (or less) likely to occur before the extreme pulses.
- In experimental data (work in progress): in order to identify patterns that anticipate the extreme pulses, noise needs to be filtered.
- The analysis of the pattern probabilities can provide complementary information to advance rogue wave predictability.
- Open issue: applicability to real-word time-series?

Campus d'Excel·lència Internacional

- Nuria Martinez and Saurabh Borkar (IIT Guwahati)
- Mattia Panozzo (Uni. Padova), Carlos Quintero, Jordi Tiana
- Jordi Zamora, Jose M. Aparicio Reinoso
- Carme Torrent

Experimental data: S. Barland (Nice)

Campus d'Excel·lència Internacional

HAPPY BIRTHDAY !!!

Thank you for your attention!

Papers at http://www.fisica.edu.uy/~cris/

- C. Bonatto et al, PRL 107, 053901 (2011).
- J. Zamora-Munt et al, PRA 87, 035802 (2013).
- J. A. Reinoso, et al, PRE 87, 062913 (2013).
- C. Quintero-Quiroz et al, Sci. Rep. 6, 37510 (2016).

