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Outline 

• Introduction 

o Semiconductor lasers (SLs) with time-delayed feedback or coupling  

o Edge-emitting lasers (EELs) & vertical-cavity lasers (VCSELs) 

 

• All-optical square wave switching 

o Polarization rotated feedback  

o Polarization rotated coupling 

 

• Conclusions and perspectives 



Semiconductor lasers (SLs) 

 Semiconductor lasers have many advantages:  

o are compact, fast, reliable and inexpensive 

o emit at a wide range of wavelengths 
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 Nowaday used in 

o Telecommunications 

o Optical data storage (CDs, DVDs) 

o Optical mouse 

o Barcode scanners, laser printers 

o Sensing & material processing 

o Life sciences applications 

o etc 

 

 Under time-delayed feedback or 
coupling  SLs display wide range of 
complex nonlinear dynamics 

 that can be exploited for applications 

Our Motivation: to produce all optically regular square-wave 
switching with GHz repetition rates without the need of 
high-speed electronics 



C. Masoller 4 



5 

mirror 

Polarization 

selector 

Polarization 

rotator 
mirror 

TE (x) TE (x) 

TM (y) 

TM (y) 

Isotropic: 

Polarization-rotated (PR): 

Types of time-delayed optical feedback 

TE (x) is the 

natural lasing 

polarization of 

the solitary laser. 

c

L2


L 

Polarization 

rotator 
mirror 

TE (x) 

TE (x) TM (y) 

TM (y) 

Orthogonal: 



 Light 
output 

Two types of Semiconductor lasers 
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 Edge-Emitting lasers (EELs) 
 Vertical-Cavity Surface-

Emitting Lasers (VCSELs): 

because of different cavity geometries: EELs & VCSELs have  

    different polarization properties 
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Square-wave switching in VCSELs with feedback 

Physical interpretation: polarization 

self-modulation is a time-dependent 

solution that connects two fixed 

points (“external cavity modes”) that 

are orthogonally polarized 

L=16.5 cm L=5.5 cm 
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Two parameters represent the 

anisotropies between the two 

polarizations: a and p 

Model for polarization-rotated (PR) time-delayed feedback 
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Adapted from Hong et al, 
Elec. Lett. 36, 2019 (2000) 
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Simulations 
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Square-wave switching in EELs with PR feedback 

Experimental observations 
Gavrielides et al, Opt. Lett. 31, 2006 (2006) 

Periodicity: 2 

 sharp rising and falling edges 



Noisy and unstable SWs: 

Influence of the laser current: 
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Experimental observations with VCSELs 

Increasing 

current 

Time traces taken under 

identical conditions Optimal regularity at a certain 

current value 
D. Sukov et al (submitted)  

Mulet, Giudici, Javaloyes, and Balle, PRA 2007 
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Influence of the injection current: Increasing  
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SWs in relation with the parameter region where 
the solitary VCSEL is mono-stable 
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Influence of noise 
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noise-induced. 
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Polarization-rotated coupling 

L 

Time delayed mutual coupling 

Polarization 

selector & 

rotator 

TE (x) 

TM (y) 

TM (y) 

Polarization 

selector & 

rotator 

TE (x) is the 

natural lasing 

polarization of the 

solitary lasers. 



C. Masoller 15 

)(2)1)(1(
2

1
,1,11

,1 tENi
dt

dE
xspx

p

x 







0)(   )(2 )1)(1(
2

1
,2,1,1,11

,1 i

xyspypya

p

y
etEtEiENi

dt

dE




And vice-versa for laser 2 

Polarization-rotated 

coupling 

Model for polarization-rotated coupling 

Polarization 

selector & 

rotator 

TE (x) 

TM (y) 

TM (y) 

Polarization 

selector & 

rotator 
Laser 1 

  2

,1

2

,111
1   

1
yx

N

EENN
dt

dN
 





C. Masoller 16 

Experimental observations (EELs) 

D. Sukow et al, PRE 81, 025206R (2010) 
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Numerical simulations (EELs) 
square-wave switching is a transient dynamics: 

‘Injected laser’ 

‘Solitary laser’ 

C. Masoller, D. Sukow, A. Gavrielides & M. Sciamanna, PRA 84, 023838 (2011) 

Polarization 

selector & rotator 

TE (x) 

Polarization 

selector & rotator 

TM (y) 

‘Solitary laser’ ‘Injected laser’ 

Stationary state: master-slave unidirectional coupling, Laser 2 → Laser 1 

And the inclusion of noise does not modify the average duration of the transient time 
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Transient vs stationary SW switching 

However, by including in the model nonlinear gain saturation (self and 

cross saturation coefficients), in certain parameter regions, regular square-

wave switching is a stable dynamics even in the absence of noise. 



Nonsymmetrical switching Nonsymmetrical pulses 
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Multi-stability: coexisting waveforms 



For increasing coupling 

strength 

Multi-stability of 

coexisting solutions 

20 

Experimental observations 

Time traces of the intensity of one mode of one laser 

C. Masoller, D. Sukow, A. Gavrielides & M. Sciamanna, PRA 84, 023838 (2011) 
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Bifurcation analysis 
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Bifurcation analysis reveals stable and 
unstable SWs with different periods 

Sciamanna et al, submitted (2012) 

Period 2/3 
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Simulations with VCSEL model 

The square waves are only a 

transient dynamics: 

The average transient time is almost 

unaffected by the noise strength: 

And increases with the coupling 

parameters: 

Marita Torre , A. Gavrielides & C. Masoller, Optics Express 19, 20269 (2011) 

X →Y: 

Y →X: 



 We studied all-optical polarization square-wave switching in 
semiconductor lasers. 
 

 We considered polarization-rotated time-delayed optical feedback and 
mutual coupling.  
 

 We considered two types of semiconductor lasers: edge-emitting lasers 
(EELs) and vertical-cavity lasers (VCSELs). 
 

 In EELs: the inclusion of nonlinear gain saturation in the model yields 
stable SWs even in the absence of noise. 
 

 In VCSELs: good agreement between simulations and experiments in the 
feedback scheme, no experiments available yet on the coupling scheme. 

  
 Future work: influence of gain saturation terms and how to enhance the 

parameter region of stable SW switching 
 

         Summary and future work 
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