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 Call: FP7-PEOPLE-2011-ITN 

 December 1st 2011 - November 30th, 2015 

 Budget: 3.7 M€ 

 Goals: 

• To train 15 young researchers (12 PhDs + 3 postdocs) 

in the complete set of skills needed to undertake a 

career in physics and geosciences (climatology, 

complex systems, computer science, data analysis). 

• To develop long-lasting collaborations among the 

partners. 

 

 

Climatelinc.eu 



Partners: 6 academic + 3 companies  
Spain, Germany, The Netherlands, Uruguay and Israel 

 



 Many available at climatelinc.eu 

 5 PhD theses completed, several are scheduled for 

the next months. 

 Software and database also available in our web 

page. 

Results 
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 Interdisciplinary 

journals (PRL, 

GRL, Nonlinear 

Processes in 

Geophys., Chaos, 

Entropy, etc.) 



 First school (Mallorca, Spain, September 2012) 

 Second school and Workshop 1 (The Netherlands, April 2013) 

 Workshop 2 (Potsdam, November 2013) 

 Workshop 3 (Montevideo, Uruguay, April 2014) 

 Workshop 4 (Lucca, Italy, Sep. 2014 co-located with ECCS) 

 Final Conference (Viena, April 2015, co-located with EGU) 

Training Events 



 Introduction to nonlinear tools for climate data 

analysis (motivation and methodology) 

 

 Results  

 

 Summary 

 

 Ongoing and future work 

Outline 
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 Improving our understanding of climate dynamics 

requires the identification of recurrent patterns and their 

underlying causes. 

Motivation 
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 Wide range of time-scales. 

 Methods of data analysis 

remain dominated by linear 

thinking (e.g., extrapolation of 

trends). 

 Nonlinear thinking is important 

(e.g., for identifying precursors 

of extreme events and regime 

shifts). 



Method of time-series analysis: 

ordinal patterns 

 X= {…xi, xi+1, xi+2, …}  

The OP probabilities allow to identify frequent 

patterns in the ordering of the data points 

Brandt & Pompe, PRL 88, 174102 (2002) 

1 2 3 4 5 6 

 Drawback: the values of the data points are not considered. 

 Advantages:  

• We take into account temporal correlations. 

• We can select specific time-scales. 

 



Intra-
season 102 

 

Intra-
annual 012 

 

Inter-
annual 120 
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Time scales 

 Monthly data 



Regular grid 

2.5o x 2.5o  

 10226 nodes 

Xi(t) Xj(t) 
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 Data: monthly SAT anomalies 

NCEP/NCAR reanalysis 

 Similarity measure: mutual 

information 

 Visualization: area weighted 

connectivity (weighted degree) 

Climate networks:  

construction and visualization 



AWC Links of a node in Central Pacific 

11 
J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 

Results: inter-annual OPs  

(3 consecutive years) 

  



AWC Links of a node in Central Pacific 

Intra-season  

(3 consecutive months) 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 

  



Low threshold Higher threshold 

Significance test 

Surrogated data 

Original data 
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PDF MI values 
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Network comparison 

 MIH 

 Intra-

season 

(4 months) 

 Inter-

annual 

(4 years) 

0.094 

0.024 

0.047 

Link density 



5 consecutive years 5 consecutive months 
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Longer time intervals:  

binary representation 

Barreiro et al, Chaos, 21 (2011) 013101. 
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D!

 X= {…xi, xi+1,…, xi+D, …}  



Question: can the connectivity increase if 

the annual cycles are synchronized? 
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AWC with 50% strongest links 

17 

Tirabassi and Masoller, EPL, 102 (2013) 59003 



Links: distribution of  

strengths and lag-times 
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Strongest links have lag-time = 0;  

most of the links with non-zero lags are weak 



AWC density 50%, the strongest and 

the weakest links are removed 
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Why there is no effect? 

Links with non-zero lags: the time-shifting changes their weight.  

But, these changes appear to be random  effects are washed out in the AWC. 



Lag-times useful to identify 

regions with in-phase cycles 
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• colored regions: well defined 

“communities” with similar thermal inertia;  

• white areas: lag-times not well defined. 



 where are the regions with strongest nonlinear 

climate?  

 

 where are the regions where the climate is more 

stochastic? 

 

 A first step: univariate analysis of monthly SAT data 

and SAT anomalies to quantify atmospheric 

nonlinearity and stochasticy. 

To further understand the role of 

annual solar forcing 
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Quantifying atmospheric  

nonlinearity and stochasticity 
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• Ii = insolation at node i (top-of-

atmosphere incoming solar radiation) 

• xi = climatology at node i 

• xi and Ii are both normalized to zero 

mean and =1. 
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The entropy is 

computed from 

the PDF of SAT 

anomalies 

• i = in [0-4 months] minimizes Di. 

o  SAT 

 Climatology 

 Insolation 

--- Shifted Ins.  



Nonlinear measure (D) Entropy (H) 
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F. Arismendi et al, submitted (2015) 

• Regions with high nonlinearity: tropics. 

• Extratropics: high entropy & low 

nonlinearity 

Tropics 

Equatorial Africa 

Mid latitudes & NH 

Southern high lat. 

H 

D 

Results 
 



Dataset comparison 

NCEP CDAS1 ERA Interim 

In both cases, the extreme values do not appear in the other 

dataset 



 Goal: to construct a network in which regions 

with similar climate (e.g., continental) are in the 

same “community”. 

 

 “Usual” way not doable: NH and SH are indirectly 

connected. 
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Identifying regions with similar 

climate 



 Step 1: transform SAT anomalies in each node in a sequence 

of ordinal patterns 

         si = {012, 102, 210, 012…}        sj = {201, 210, 210, 012, …} 

 

 Step 2: compute transition probabilities 

      TP i = #(→)/N 

 

 Step 3: define the weights 

 

 Step 4: threshold wij to obtain the adjacency matrix. 

 

 Step 5: run a community detection algorithm. 

 

Network Construction 
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Results 
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TP Network CC Network 



 Ixy(): conditional mutual information 

 : time-scale of information transfer 

 D: net direction of information transfer 

Link directionality 
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Computed from daily SAT anomalies, PDFs estimated from histograms of values.  

MI and DI are both significant (>3, bootstrap surrogates), =30 days. 

 

                                                          Deza et al, Chaos 25, 033105 (2015) 

(Prof. Palus’ talk) 



Time-scale of interactions 
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a b 

=1 =3 =7 =30 



Contrasting structural and 

functional connectivity 
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Phases () CC  MI  MIOP 

N=12 time-

series with 

104 data points 

Goal: to test the method of network inference on Kuramotto 

oscillators with known coupling topology (Aij) 

“Observables” Y=sin() 



Instantaneous frequencies (d/dt) 

Also analyzed empirical data from coupled electronic chaotic circuits: results in 

good agreement with synthetic Kuramoto data.  

Tirabassi et al, Sci. Rep. 5 10829 (2015)  

CC  MI  MIOP 
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Ongoing work 

CC analysis of Hilbert 

frequencies computed from 

SAT data 

Climate network 

constructed from CC 

analysis of SATA data 

Details in Dario Zappala’s poster 



 Take home message: nonlinear time-series analysis unveils 

relevant information about our climate dynamics, consistent 

with well-known climate phenomena. 

 

 A few conclusions: 

• No increase of connectivity obtained when taking into account lag-times 

between annual solar cycles.  

• Atmospheric stochasticity & nonlinearity: nonlinearity mainly in the 

tropics; possible application: model inter-comparisons. 

• Climate communities: regions with similar thermal inertia or dynamics. 

• DI identifies the net direction & time-scale of information transfer. 

• In a small synthetic network, CC analysis of the instantaneous 

frequencies allowed perfect network inference. 

Summary: what did we learn?  



 Favored / infrequent patterns in climate dynamics?  

 Quantifying time-evolving networks via a novel network 

dissimilarity measure (poster by Laura Carpi). 

Ongoing and future work 
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 Networks in shorter time-scales (sub-seasonal). 

 Ordinal analysis & multiplex networks:  

• in different seasons (winter, summer) 

or years (El Niño / La Niña) 

• from different fields (pressure, wind 

velocity, etc.)  



 Ignacio Deza (UPC) 

 

 Giulio Tirabassi (UPC) 

 

 Dario Zappala (UPC) 

 

 Laura Carpi (UPC) 

 

 Fernando Arismendi 

Universidad de la República, Uruguay 

 

 Marcelo Barreiro 

Universidad de la República, Uruguay 

Collaborators 
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THANK YOU FOR YOUR ATTENTION ! 

<cristina.masoller@upc.edu>  

 

Climatelinc.eu 

http://www.fisica.edu.uy/~cris/ 

 

 M. Barreiro et al, Chaos 21, 013101 (2011). 

 

J. I. Deza et al,  Eur. Phys. J. Special Topics 222, 511 (2013). 

 

G. Tirabassi and C. Masoller, EPL 102, 59003 (2013). 

 

J. I. Deza et al, Chaos 25, 033105 (2015). 

 

G. Tirabassi et al, Sci. Rep. 5, 10829 (2015). 

 

Climatelinc.eu
http://www.fisica.edu.uy/~cris/
http://www.fisica.edu.uy/~cris/

