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 Photonics (dynamics of laser, time-delay feedback),  

 Biophysics (neuronal excitability, synchronization),  

 Time series analysis (extreme events, tipping points and regime 

transitions, climate data analysis, biomedical signals),  

 Complex networks (network inference, climate networks and 

communities). 

Our research: nonlinear and stochastic 

phenomena in complex systems 
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 hours to 

days, 

 

 months to 

seasons,  

 

 decades to 

centuries, 

 

 and even 

longer... 

 

The climate system: a complex system 

with a wide range of time-scales 

06/11/2016 

An ‘‘artist’s representation’’ of the power 

spectrum of climate variability (Ghil 2002). 



 ENSO 

 The Atlantic multi-decadal 

oscillation 

 The Indian Ocean Dipole 

And a wide range of spatial 

modes of variability 
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 The Madden–Julian oscillation 

 The North Atlantic oscillation 

 The Pacific decadal oscillation 

 Etc. 



Nodes and links of the 

climate network 
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Eguiluz et al, PRL 2005 

Deza et al, Chaos 2013 

Donges et al, Chaos 2015 

Area-weighted 

connectivity (degree)  

Similarity measure (correlation, 

mutual information, etc.) 

Thresholded matrix 

(adjacency matrix) 
Climate network 

Statistically significant 

similarity values (links)  

Time series of a climate variable (air 

temperature, wind, precipitation, etc.) 



Physical mechanisms responsible 

for teleconnections 
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Winds, ocean currents and solar forcing. 

http://www.aoml.noaa.gov 



 Anomalies = annual solar cycle removed 

 Spatial resolution 2.5 x 2.5  10226 nodes 

 Daily / monthly 1949 - 2013  23700 / 700 data points 

 

Where does the data come from? 

 National Center for Environmental Prediction, National 

Center for Atmospheric Research (NCEP-NCAR).  

 Free! 

 Reanalysis = run a sophisticated model of general 

atmospheric circulation and feed the model (data 

assimilation) with empirical data, where and when available.  
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The data: surface air temperature 
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Statistical similarity 

measure 

  Mutual information 

 

 

 We use ordinal symbolic time-series to compute the 

probabilities. 

Brandt & Pompe, PRL 88, 174102 (2002) 

X= {…xi, xi+1, xi+2, …}  

─ Drawback: we lose information about the actual values. 

─ Advantage: we can select the time scale of the analysis. 

 



Intra-
season 102 

 

Intra-
annual 012 

 

Inter-
annual 120 
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Ordinal analysis allows selecting 

the time scale of the analysis 



Network when the probabilities are 

computed with ordinal analysis 

Network when the probabilities are 

computed with histogram of values 

Contrasting two methods for 

inferring the climate network 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013) 



Influence of the time-scale of 

the symbolic ordinal pattern 

14 Longer time-scale  increased connectivity 

J. I. Deza et al (2013) 



How do we assess the 

significance of the links? 

Original data 

Surrogated 
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PDF 

MI 

values 

99.87% confidence level that the links have MI values that are 

not consistent with random values. 

J. I. Deza et al (2013) 

Mutual information 

TH = <MI> + 3 
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Influence of the threshold 

Network constructed from 

Cross-Correlation (CC) analysis 

Network constructed from 

Mutual Information (MI ordinal 

analysis, annual time scale) 

J. I. Deza et al (2013) 



Can we test the method used 

to infer the links? 

• Simulations of Kuramoto oscillators with 

known random coupling topology. 

• Experiments with chaotic electronic circuits. 



Kuramoto oscillators 

• Aij is a known symmetric random matrix 

• N =12 oscillators. 

• Performed 100 simulations (104 data points each) with 

different oscillators’ frequencies, random matrices, noise 

realizations and initial conditions. 

• For each value of K, the threshold was varied to obtain 

optimal reconstruction. 

G. Tirabassi et al, Sci. Rep. 5 10829 (2015)  



Results 

Phases () CC  MI  MIOP “Observable” Y=sin() 

True positives False positives True positives False positives 



Instantaneous frequencies (d/dt) 

 

CC  MI  MIOP 

For strong enough coupling K perfect inference is possible!  

BUT  

• the number of oscillators is small (12),  

• the coupling is symmetric (   only 66 possible links) and 

• the data sets are long (104 points) 

G. Tirabassi et al, Sci. Rep. 5 10829 (2015)  



Correlation analysis of two UNCOUPLED oscillators (K=0) 
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Why the frequencies are better than 

phases and “observables”? 

Phases   

Y=sin() 

d/dt 
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We also analyzed experimental data: 12 chaotic Rössler 

electronic oscillators (symmetric and known random coupling) 

The Hilbert Transform 

was used to obtain 

phases from 

experimental data 

Experiments performed by  Javier Buldu (Universidad Rey Juan Carlos, Madrid) 

and Ricardo Sevilla-Escoboza (Universidad de Guadalajara, México) 
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Results obtained with 

experimental data 
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Observed 

variable (x)  

Hilbert phase  

Hilbert frequency 

CC  MI  MIOP 

• No perfect 

reconstruction 

 

• No important 

difference 

among the 3 

methods & 3 

variables 



Ongoing work 

Climate network built from zero-lag CC analysis  

SAT Hilbert 

D. Zappala et al, in preparation. 
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Anomaly network 

Connectivity maps 

Hilbert frequency network 



 Goal: to construct a network in 

which regions with similar climate 

(e.g., continental) are in the same 

“community”. 

 

 Problem: not possible with the 

“usual” method to construct the 

network because NH and SH are 

only indirectly connected. 
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Climate “communities” 

How to identify regions with similar climate? 



 Step 1: transform SAT anomalies in each node in a sequence 

of symbols (we use ordinal patterns) 

         si = {012, 102, 210, 012…}        sj = {201, 210, 210, 012, …} 

 

 Step 2: in each node compute the transition probabilities 

      TP i = #(→)/N 

 

 Step 3: define the weights 

 

 Step 4: threshold wij to obtain the adjacency matrix. 

 

 Step 5: run a community detection algorithm (Infomap). 

 

Network construction based on 

similar symbolic dynamics 
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Results 
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TP Network CC Network (only the largest 16) 



Another way to identify communities: 

lag-times between seasonal cycles 
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Rome 

Buenos Aires 
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G. Tirabassi and C. Masoller, Sci. Rep. 6:29804 (2016) 

• Oceans tend to have a one-month delay 

with respect to the landmasses. 

• Well defined long-range spatial patterns. 

Climate communities: regions with 

inphase seasonal cycles 



 Take home message: network tools and symbolic ordinal 

analysis provide an opportunity for advancing 

understanding and predictability of our climate. 

 

 Ordinal analysis allows identifying time-scales of climate 

interactions and climate communities. 

 

 In small synthetic networks, under appropriate conditions, 

perfect network inference is possible. 

Summary 
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