Identifying and characterizing regime transitions with network-based data analysis tools

Cristina Masoller Terrassa, Barcelona, Spain

Cristina.masoller@upc.edu

www.fisica.edu.uy/~cris

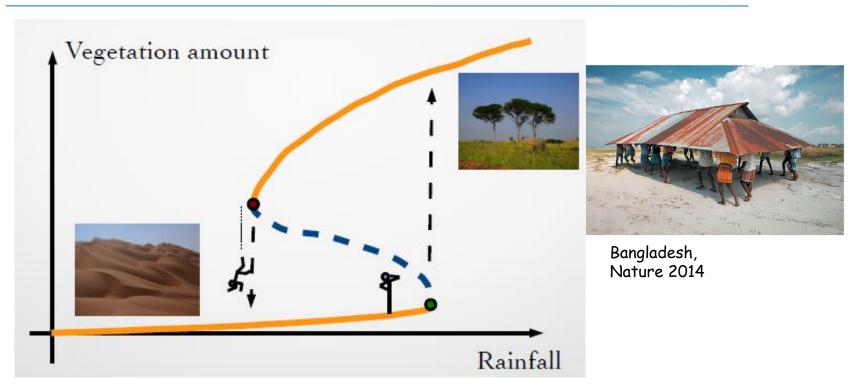
Campus d'Excel·lència Internacional

Puebla, Mexico, September 2017

LANET

Tipping points in ecosystems

Campus d'Excel·lència Internacional



Is there a way to quantify how close we are to the transition point?

Goal: to develop reliable early warning indicators

Examples from the output intensity of two laser systems

Campus d'Excel·lència Internacional

Polarization switching

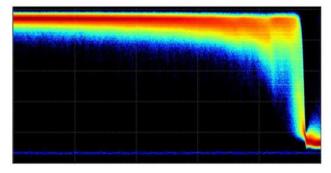
Semiconductor laser output intensity as the pump current increases

Transition to turbulence

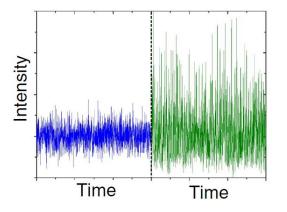
Fiber laser output intensity as the pump power increases

Goal: convince you that

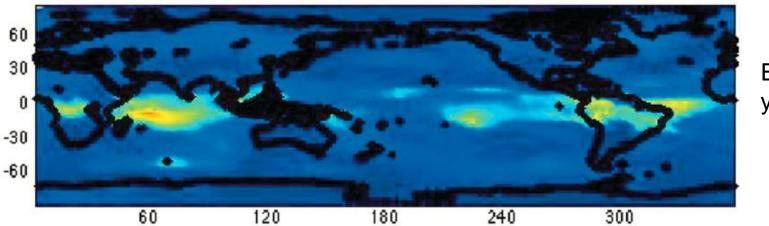
- Novel data analysis tools can provide new insights into these phenomena.
- Optical data can be useful for testing novel analysis tools.



Time



How to compare time-evolving networks?

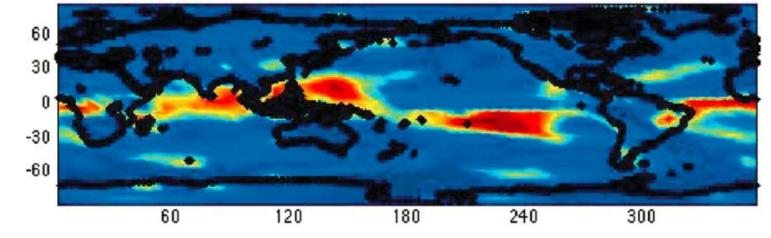


El Niño years

La

Niña

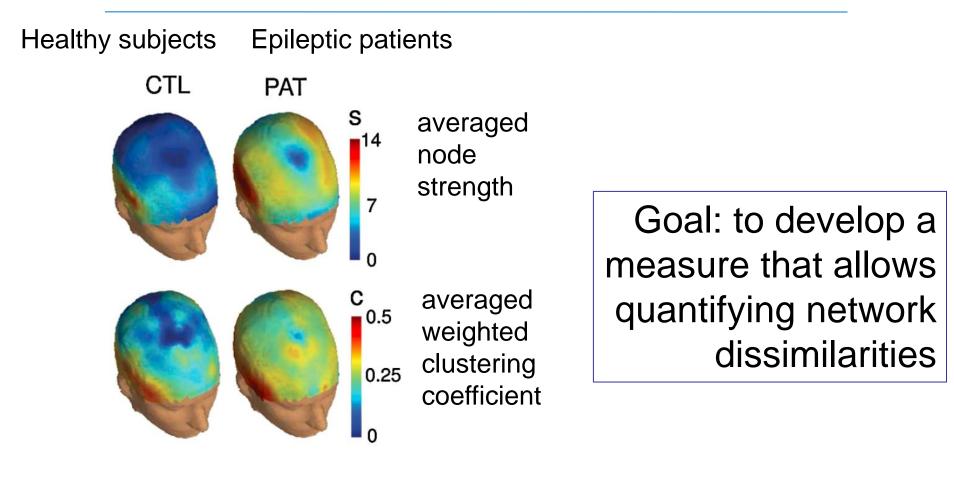
years



Tsonis and Swanson, PRL 100, 228502 (2008)

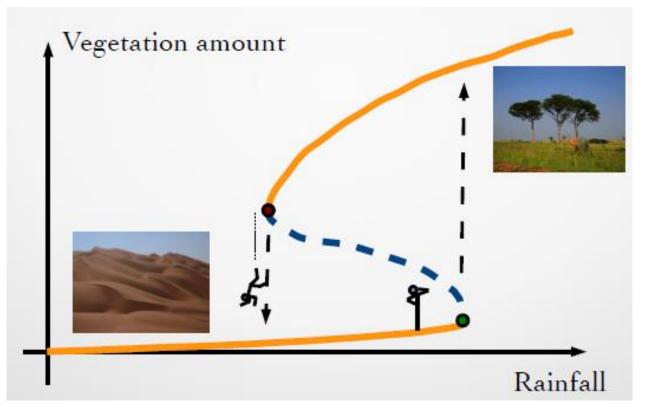
Functional brain networks

Campus d'Excel·lència Internacional



M. Chavez et al., PRL 104, 118701 (2010)

- Early-warning indicators of desertification transition
- Quantifying sudden changes using symbolic networks
- Emergence of temporal correlations in the optical laminarturbulence transition
- Quantifying network dissimilarities



Early-warning indicators of desertification transition

Campus d'Excel·lència Internacional

Coauthors: G. Tirabassi (UPC), J. Viebahn,
 V. Dakos , H.A. Dijkstra, M. Rietkerk & S.C.
 Dekker (Utrecht University)

- Bifurcation \rightarrow eigenvalue with 0 real part
- $\blacksquare \rightarrow$ long recovery time of perturbations
- Critical Slowing Down (CSD)
- CSD → High autocorrelation, variance, spatial correlation, etc.
- Can we use "correlation networks" to detect tipping points?
- "correlation networks"?

Desertification transition: model

Campus d'Excel·lència Internacional

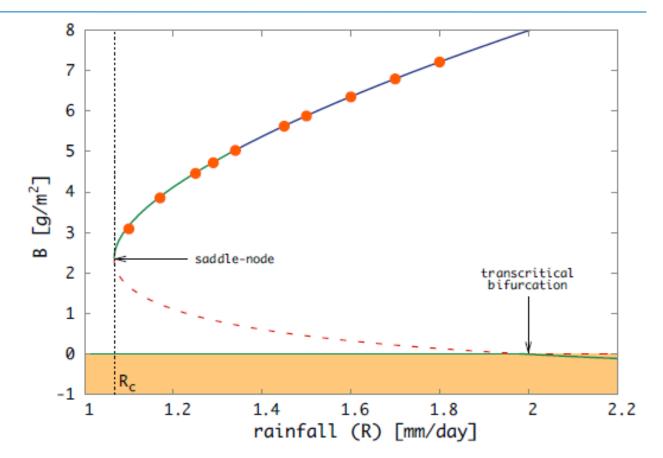
$$dw_{t} = \left(\frac{R}{\tau_{w}} - \frac{W}{\tau_{w}} - AWB + D\Delta W\right) dt + \sigma_{w} dW_{t}$$
$$dB_{t} = \left(\rho B \left(\frac{W}{W_{0}} - \frac{B}{B_{0}}\right) - \mu \frac{B}{B + B_{0}} + D\Delta B\right) dt + \sigma_{B} dW_{t}$$

- w (in mm) is the soil water amount
- B (in g/m²) is the vegetation biomass
- Uncorrelated Gaussian white noise
- R (rainfall) is the bifurcation parameter

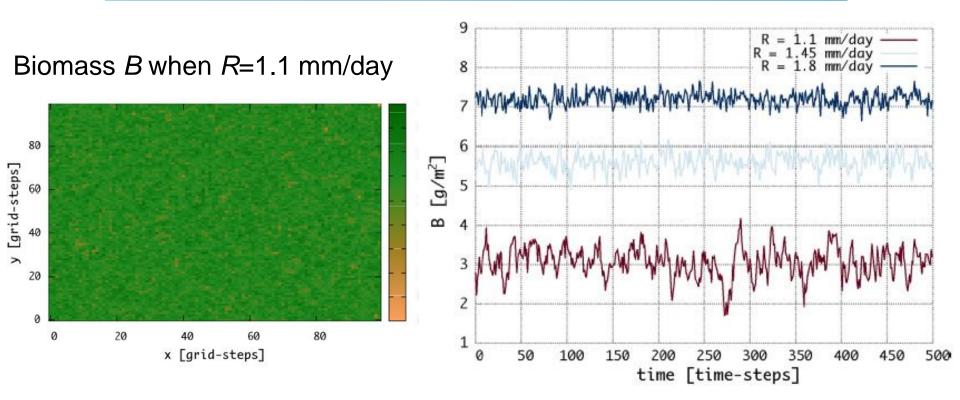
Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011)

Saddle-node bifurcation

Campus d'Excel·lència Internacional



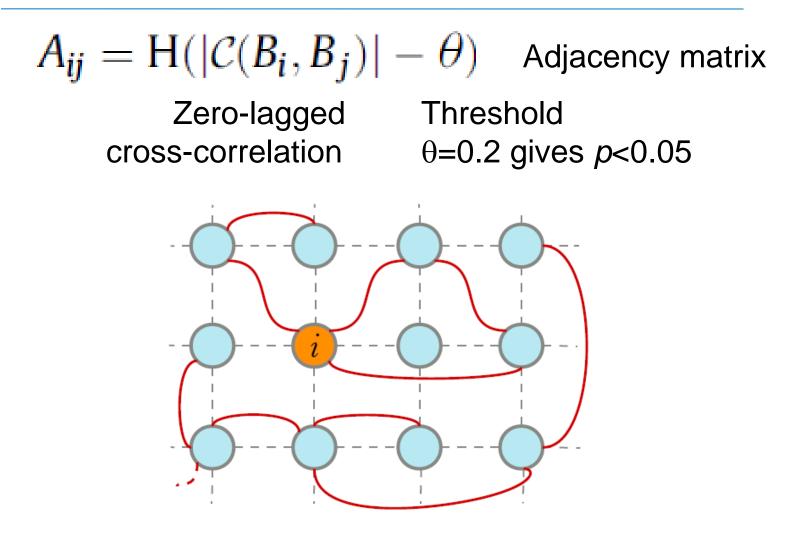
 $R < R_c$: only desert-like solution (B=0) $R_c = 1.067 \text{ mm/day}$



100 m x 100 m = 10^4 grid cells Simulation time 5 days in 500 time steps Periodic boundary conditions

Correlation Network

Campus d'Excel·lència Internacional



G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

Network analysis

Degree (number of links of a node)

 Assortativity (average degree of the neighbors of a node)

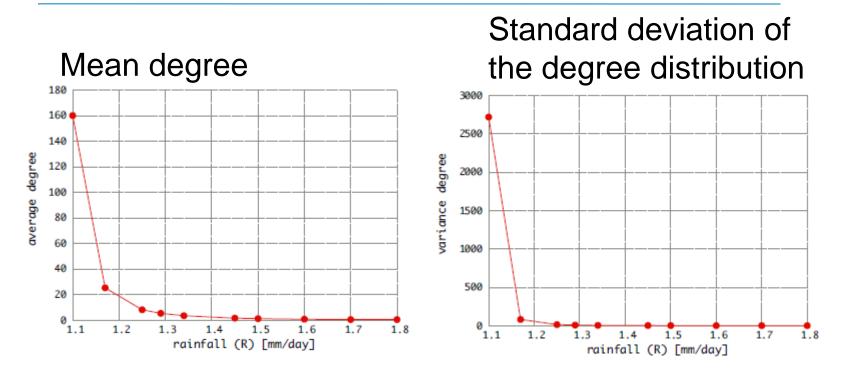
 Clustering (fraction of neighbors of a node that are also neighbors among them)

f
$$c_i \equiv \frac{1}{k_i(k_i - 1)} \sum_{j=1}^{N} \sum_{l=1}^{N} A_{ij} A_{jl} A_{li}$$

$$k_i \equiv \sum_{j=1}^N A_{ij}$$

 $a_i \equiv \frac{1}{k_i} \sum_{j=1}^N A_{ij} k_j$

Results

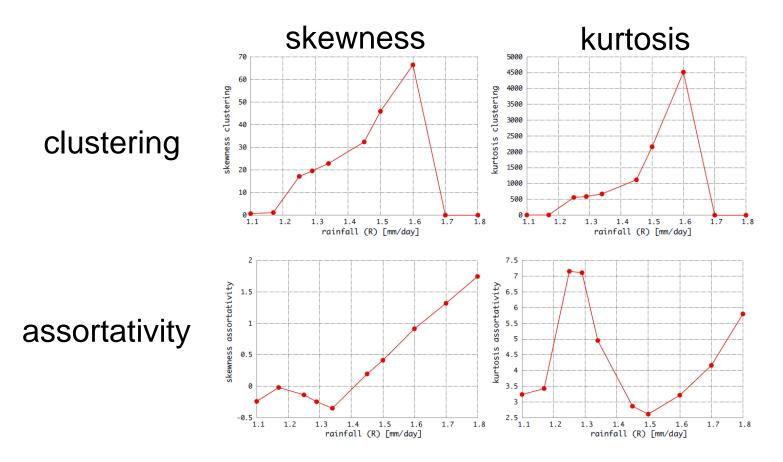


Sharp increase close to the transition captures the emergence of spatial correlations

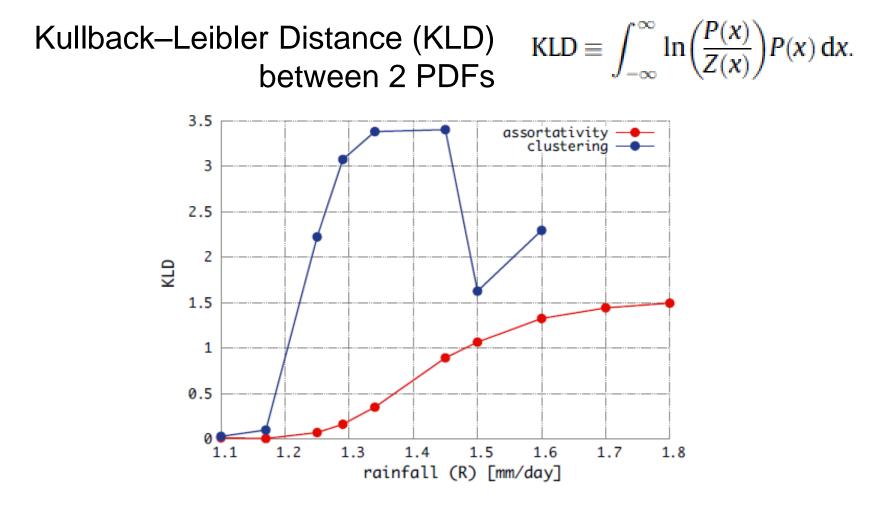
G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

Network-based indicators

Campus d'Excel·lència Internacional



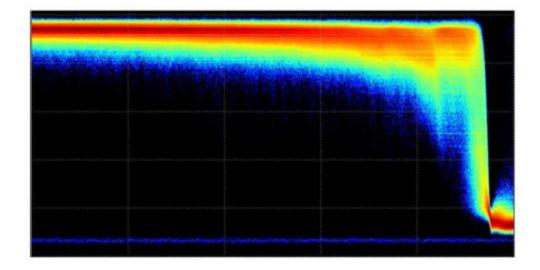
"Gaussianisation" of the clustering and of the assortativity distributions when approaching the tipping point



G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

- Indicators based in "correlation networks" can identify desertification transition in advance.
- Open issue: the "Gaussianisation" might be a model-specific feature.

G. Tirabassi et al., *Interaction network based early-warning indicators of vegetation transitions*, Ecological Complexity 19, 148 (2014)

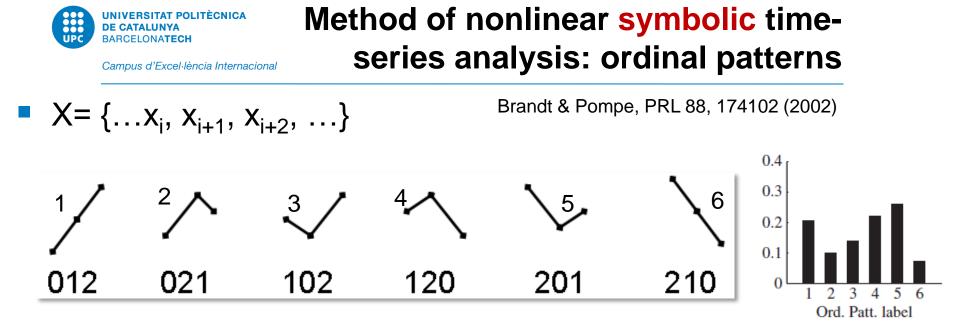


Quantifying sudden changes using symbolic networks

- "optical big data": provides new insight & is useful for testing novel diagnostic tools

Campus d'Excel·lència Internacional

Coauthors: A. Pons (UPC), S. Gomez & A. Arenas (Tarragona) Experimental data: S. Barland (INLN, Nice, France) & Y. Hong (Bangor University, Wales, UK)



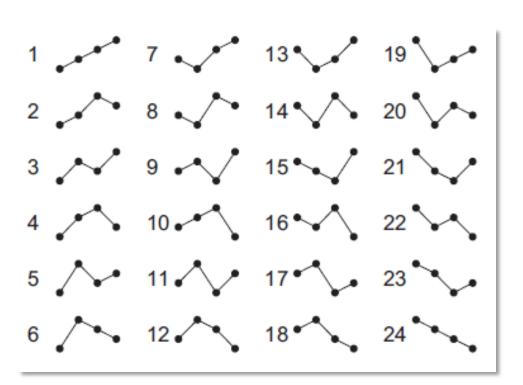
The OP probabilities allow identifying more expressed and/or infrequent patterns in the order of the sequence of data values.

Random data? (OPs equally probable)

- Advantage: the probabilities uncover temporal correlations.

- Drawback: we lose information about the actual values.
 - ⇒ Ordinal analysis gives complementary information to that gained with other analysis tools.

The number of patterns increases as D!

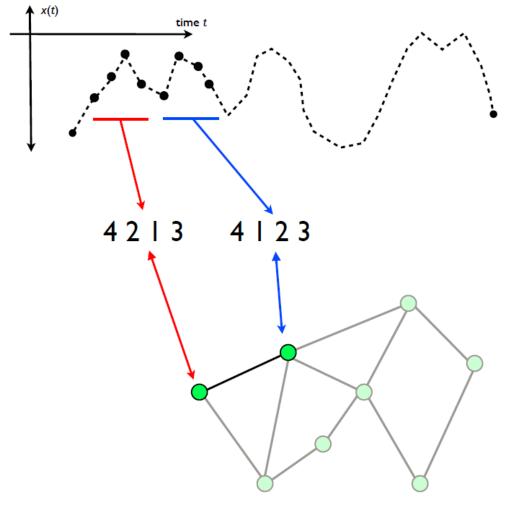


Opportunity: turn a time-series into a network by using the patterns as the "nodes" of the network.

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

The network nodes are the "ordinal patterns", and the links?

Campus d'Excel·lència Internacional



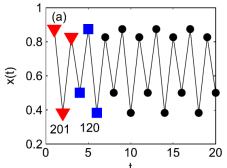
- The links are defined in terms of the probability of pattern "β" occurring after pattern "α".
- Weighs of nodes: the probabilities of the patterns (∑_i p_i=1).
- <u>Weights of links</u>: the probabilities of the transitions (∑_j w_{ij}=1 ∀i).

⇒ Weighted and directed network

Adapted from M. Small (The University of Western Australia)

- Entropy computed from the weights of the nodes (permutation entropy) $s_p = -\sum p_i \log p_i$
- Entropy computed from weights of the links (transition probabilities, '01' \rightarrow '01', '01' \rightarrow '10', etc.)

$$w_{ij} = \frac{\sum_{t=1}^{L-1} n \left[s(t) = i, s(t+1) = j \right]}{\sum_{t=1}^{L-1} n \left[s(t) = i \right]}$$



• Asymmetry coefficient: normalized difference of transition probabilities, $P('01' \rightarrow '10') - P('10' \rightarrow '01')$, etc.

$$a_{c} = \frac{\sum_{i} \sum_{j \neq i} \left| w_{ij} - w_{ji} \right|}{\sum_{i} \sum_{j \neq i} \left(w_{ij} + w_{ji} \right)}$$

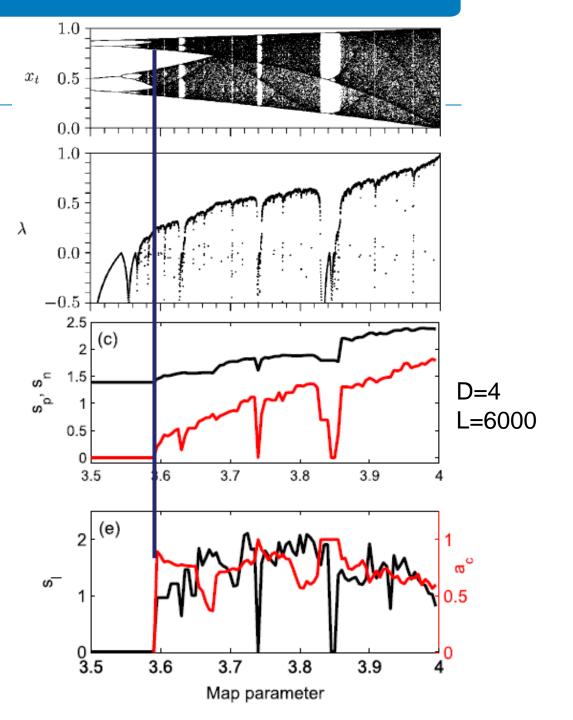
(0 in a fully symmetric network;1 in a fully directed network)

First test the method with synthetic data: the logistic map

- x(i+1)=r x(i)[1-x(i)]
- ⇒ Detects a transition that is not seen with Lyapunov analysis.

C. Masoller et al, New J. Phys. 17, 023068 (2015)

29/01/2018



Polarization-resolved intensity: two sets of experiments

•

Time series recorded

Record the turn-off of

with laser current

varying in time.

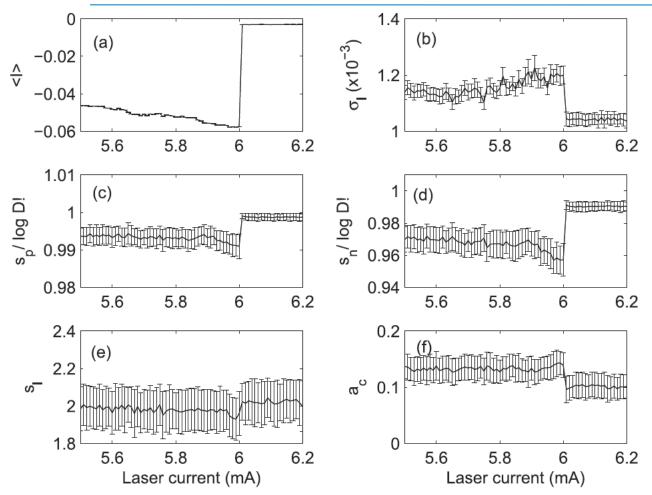
Campus d'Excel·lència Internacional

- Time series recorded with laser current constant in time.
- Record the <u>turn-on</u> of the orthogonal mode.
 - the fundamental mode. Olarization-resolved intensity (arb. units) 0.01 250 -0.01 200 Power (arb.u.) -0.02 Time 150 -0.03 100 -0.04 50 -0.05 0 200 0 400 600 800 1000 -0.06 Time (0.1ns) -0.07Time 5.6 5.8 6 Bias current (mA)

Is it possible to anticipate the PS?

No if the mechanisms that trigger the PS are fully stochastic.

Results for constant pump current & turn-on of the orthogonal mode



⇒ Despite of the stochasticity of the time-series, the measures "anticipate" the PS.

⇒ Deterministic mechanisms involved.

Error bars computed from 100 non-overlapping windows with L=1000 data points each. Length of the pattern D=3.

C. Masoller et al, New J. Phys. 17 (2015) 023068

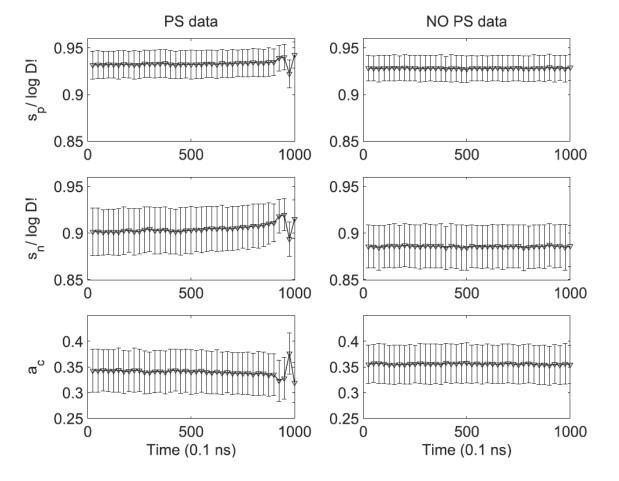
Second set of experiments

Campus d'Excel·lència Internacional

Time-varying pump current & turn-off of the fundamental mode

Slightly different optical feedback conditions result in PS or no PS.

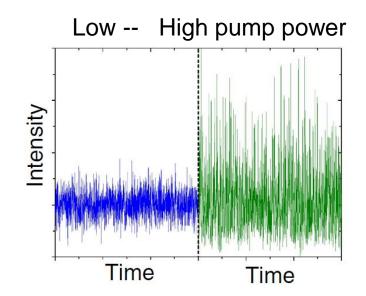
Analysis done with D=3, error bars computed with 1000 time series L=500.



C. Masoller et al, New J. Phys. 17 (2015) 023068

- In synthetic data: indicators based in symbolic networks characterize increase of complexity and detect transitions not captured by Lyapunov analysis.
- In empirical data: they provide early warning indicators of polarization-switching.

C. Masoller et al, "Quantifying sudden changes in dynamical systems using symbolic networks", New J. Phys. 17, 023068 (2015).

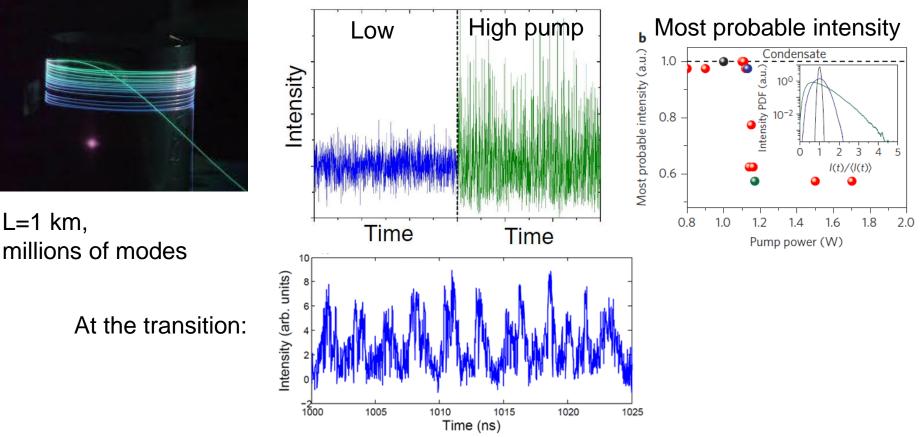


Characterizing the laminar-turbulence transition in a fiber laser

Campus d'Excel·lència Internacional

Experimental data from Aston University, UK (Prof. Turitsyn' group)

Fiber laser

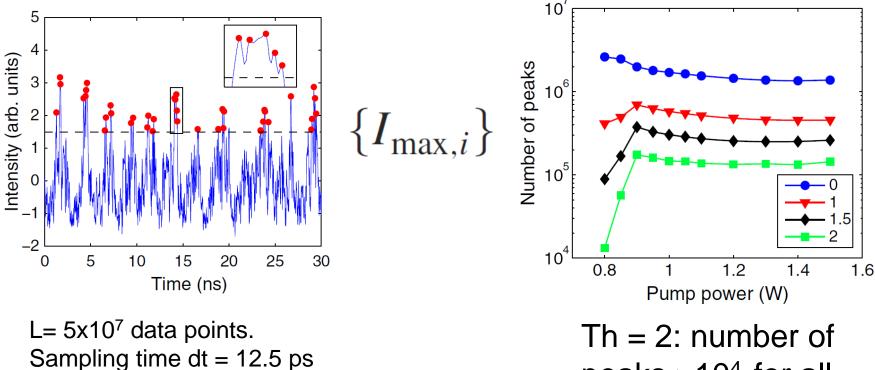


E. G. Turitsyna et al. Nat. Phot. 7, 783 (2013)

Analysis of the intensity peaks higher than a threshold

Campus d'Excel·lència Internacional

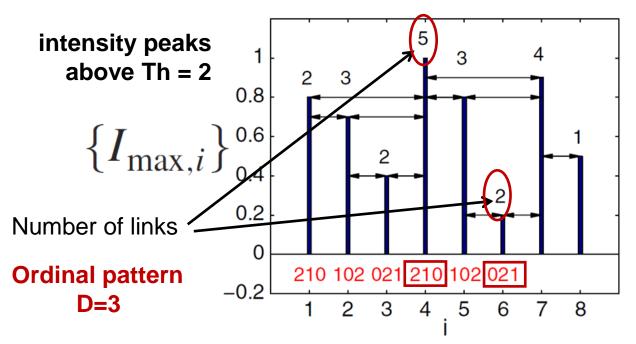
Each time series is first normalized to $\langle I \rangle = 0$ and $\sigma = 1$



peaks $>10^4$ for all values of the pump power

Diagnostic tool: horizontal visibility graph (HVG)

A time-series is represented as a graph, where each data point is a node



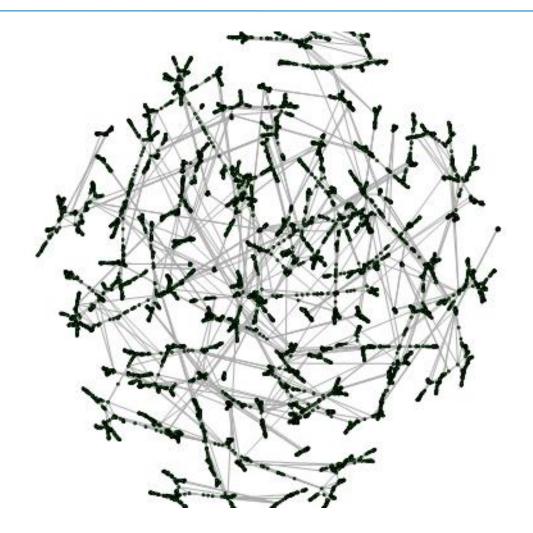
 <u>Rule</u>: data points *i* and *j* are connected if there is "visibility" between them: I_{max,i} and I_{max,j} > I_{max,n} for all n, i<n<j

\Rightarrow Unweighted and undirected graph

HVG method: B. Luque et al, PRE 80, 046103 (2009)

The resulting network

Campus d'Excel·lència Internacional



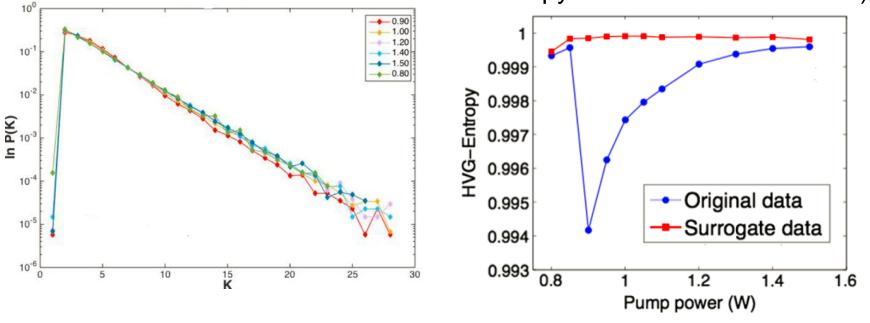
How to characterize this network?

HVG analysis

 \Rightarrow Degree Distribution (distribution of the number of links)

 Degree distribution for various pump powers using Th=2.

 Entropy of the degree distribution (normalized to the entropy of Gaussian white noise)



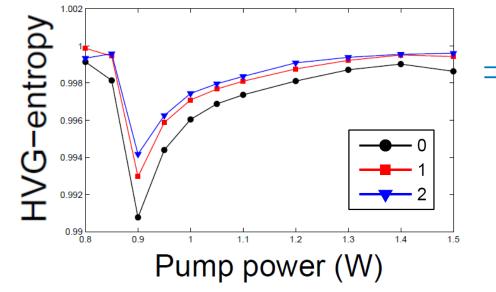
 \Rightarrow sharp transition detected.

Aragoneses et al, PRL 116, 033902 (2016)

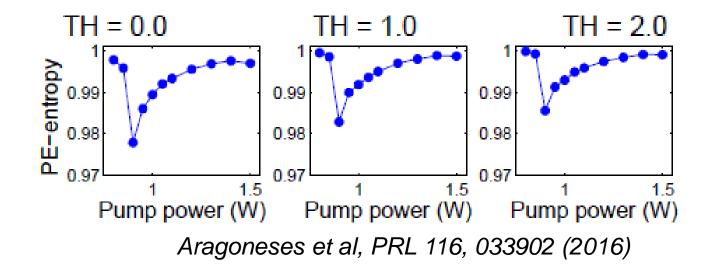
Influence of the threshold

Campus d'Excel·lència Internacional

Raw data $\{\ldots I_{i} \ldots\} \Rightarrow Th \Rightarrow \{\ldots I_{max,i} \ldots\}$

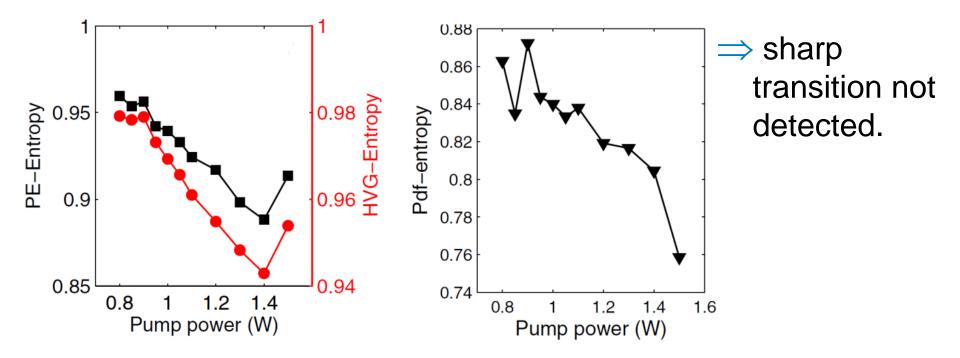


⇒ sharp transition detected with different thresholds.



When no thresholding

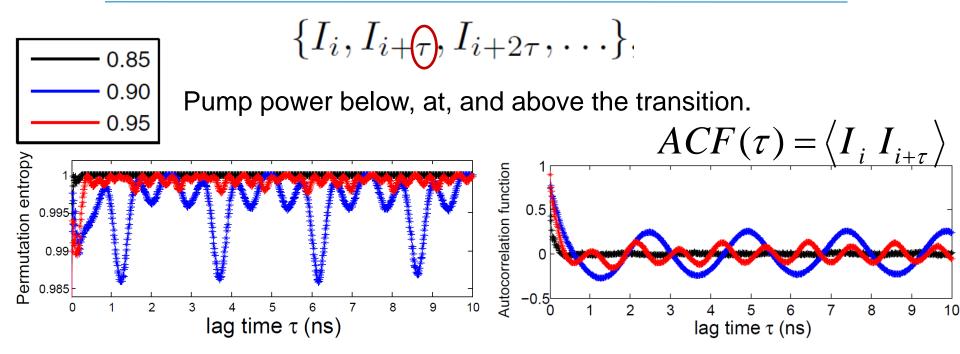
Raw data $\{\ldots I_i \ldots\}$



Can we obtain more info. from the raw data?

Aragoneses et al, PRL 116, 033902 (2016)

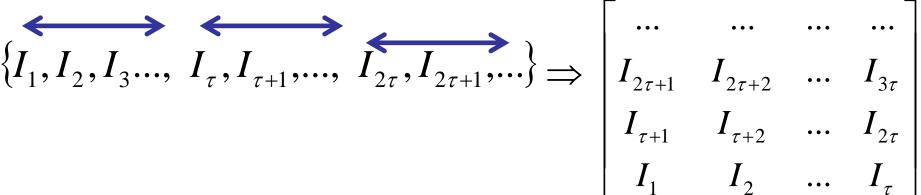
Ordinal analysis of lagged intensity data



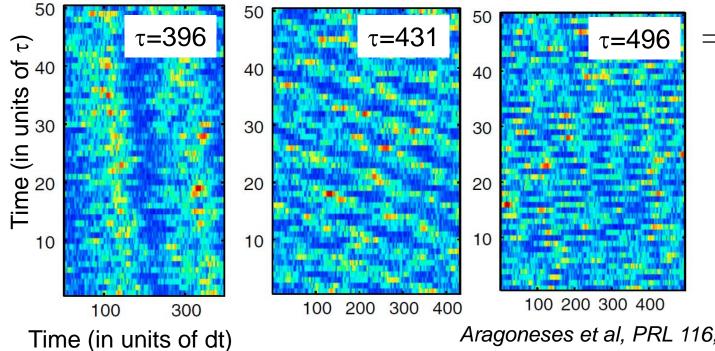
 \Rightarrow Sharp variations not captured by linear correlation analysis.

Space time representation

Campus d'Excel·lència Internacional



Color: *I*_i

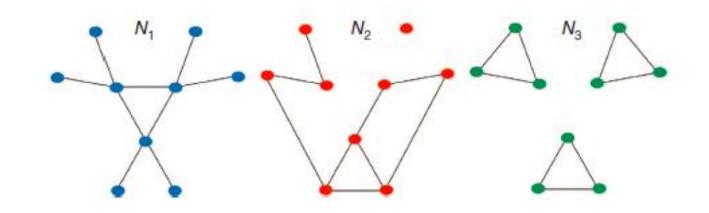


Different \Rightarrow coherent structures uncovered with different lags (sampling times).

Aragoneses et al, PRL 116, 033902 (2016)

- The laser intensity dynamics was mapped to a complex network.
- Sharp transition seen in thresholded data but not in raw data.
- Specific time-scales detected at the transition, not captured by linear correlation analysis.

A. Aragoneses et al, "Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser" PRL 116, 033902 (2016).



Quantifying network dissimilarities

Campus d'Excel·lència Internacional

Coauthors: T. A. Schieber, L. Carpi, M. G. Ravetti (Bello Horizonte, Brazil), A. Diaz-Guilera (UB), P. M. Pardalos (Florida, US)

- Degree distribution, closeness centrality, betweenness centrality, average path length, etc.
- Provide partial information.
- How to define a measure that contains detailed information about the global topology of a network, in a compact way?
- \Rightarrow Node Distance Distributions (NDDs)
- p_i(j) of node "i" is the fraction of nodes that are connected to node i at distance j
- If a network has N nodes:

NDDs = vector of N pdfs { $p_1, p_2, ..., p_N$ }

If two networks have the same set of NDDs ⇒ they have the same diameter, average path length, etc.

UNIVERSITAT POLITÈCNICA How to condense the information contained BARCELONATECH Campus d'Excel·lència Internacional in the node-distance distributions?

- The Network Node Dispersion (NND) measures the heterogeneity of the N pdfs {p₁, p₂, ..., p_N}
- Quantifies the heterogeneity of connectivity distances.

$$\begin{split} \mathrm{NND}(G) &= \frac{\mathcal{J}(\mathbf{P}_1, \dots, \mathbf{P}_N)}{\log(d+1)} \quad \mathsf{d} = \mathsf{diameter} \\ \mathcal{J}(\mathbf{P}_1, \dots, \mathbf{P}_N) &= \frac{1}{N} \sum_{i,j} p_i(j) \log\left(\frac{p_i(j)}{\mu_j}\right) \\ \mu_j &= \left(\sum_{i=1}^N p_i(j)\right) / N \\ & \underset{\text{P and } Z}{\text{Reminder:}} \quad \mathrm{KLD} \equiv \int_{-\infty}^{\infty} \ln\left(\frac{P(x)}{Z(x)}\right) P(x) \, \mathrm{d}x. \end{split}$$

Example of application: percolation transition

a 0.14 B -N = 1000.12 -N = 1,000-N = 10.0000.1 \Rightarrow in a random network 0.08 UND the Network Node 0.06 Dispersion detects the percolation transition 0.04 0.02 0 2 8 10 6 n Log (PN) P=connection probability

> T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017).

Dissimilarity between two networks

$$D(G, G') = w_1 \sqrt{\frac{\mathcal{J}(\mu_G, \mu_{G'})}{\log 2} + w_2} \left| \sqrt{\text{NND}(G)} - \sqrt{\text{NND}(G')} \right| \qquad w_1 = w_2 = 0.5$$

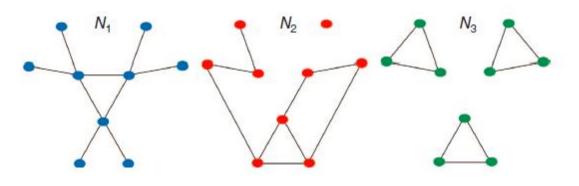
compares the averaged connectivity compares the heterogeneity of the connectivity distances

Extensive numerical experiments demonstrate that isomorphic graphs return D=0

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Comparing three networks with the same number of nodes and links

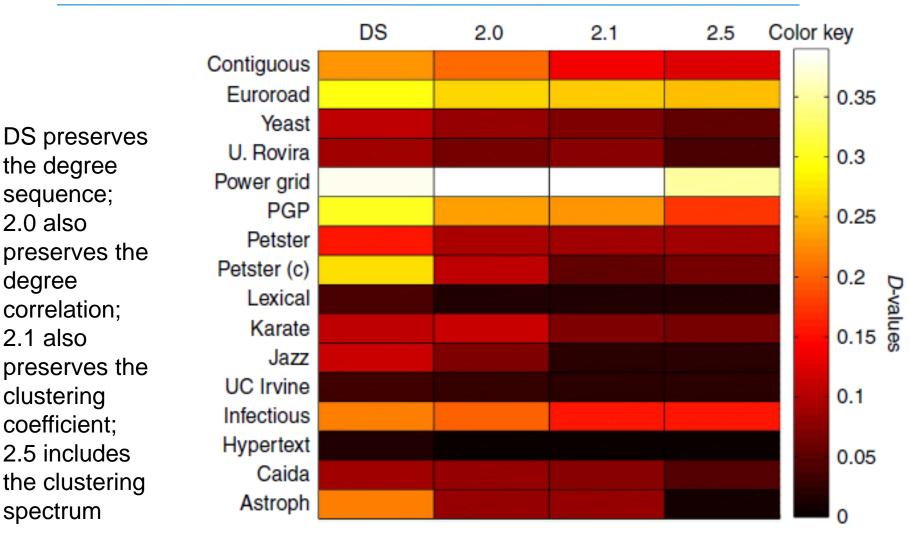
Campus d'Excel·lència Internacional



	D	Hamming	Graph Edit Distance
N_1, N_2	0.25	12	6
N_1, N_3	0.56	12	6
N_2, N_3	0.47	12	6

Comparing real networks to null models

Campus d'Excel·lència Internacional



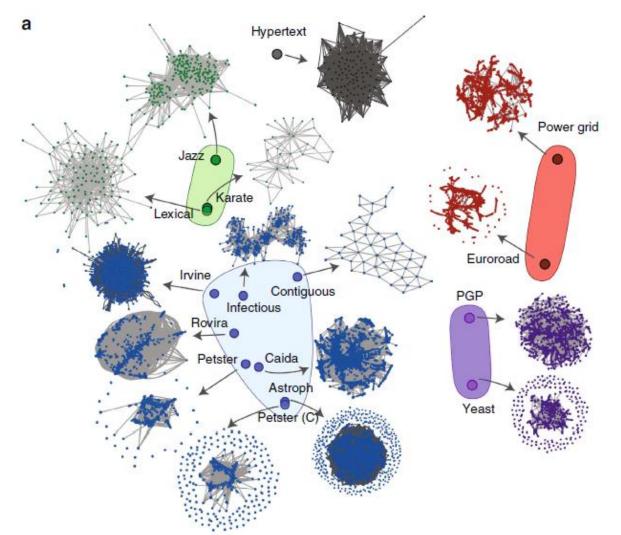
T. A. Schieber et al, Nat. Comm. 8:13928 (2017) Details in the supplementary information

Best model of Power Grid Network?

1.0 2.0 HVG fBm (H=0.14) 2.1 Power grid 2.5

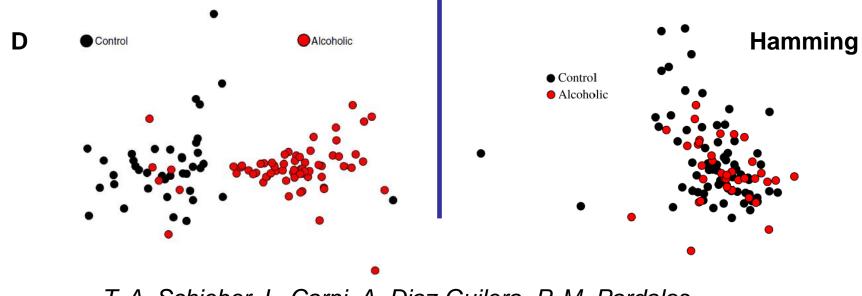
T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017).

Comparing real networks among them



T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017).

- Use HVG to transform EEG time-series into networks.
- Weight between two brain regions given by 1-D(G,G')
- Identify two brain regions (called 'nd' and 'y'), where the weight of the connections between these regions is higher in control than in alcoholic networks

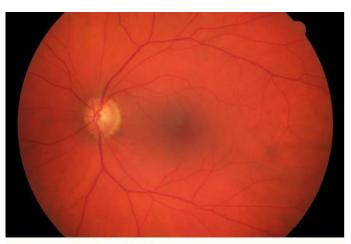


T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017).

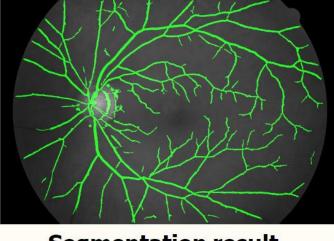
- New measure to quantify the heterogeneity of the connectivity paths of a single network.
 - Detects percolation transition in random networks.
- New measure to calculate the "distance" between two networks
 - Can be applied to networks of different sizes.
 - Returns D=0 only if the two networks are isomorphic.
- Ongoing work: application to real data.

Problem

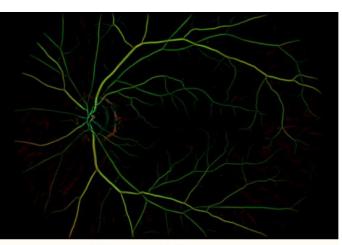
Campus d'Excel·lència Internacional



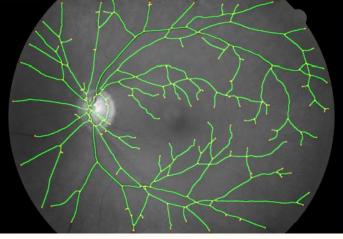
Original fundus image



Segmentation result



Filtered image



Network identification

Work by P. Amil in collaboration with Irene Sendiña-Nadal

Coauthors

At UPC:

- Giulio Tirabassi
- Andres Aragoneses
- Laura Carpi
- Antonio Pons
- Carme Torrent

Experimental data:

- Polarization swithching data from
 S. Barland (Nice, France) and
 Y. Hong (Bangor University, UK)
- Fiber laser data from S.K.
 Turitsyn, N. Tarasov & D.V.
 Churkin (Aston University, UK)

Elsewhere:

- J. Viebahn, V. Dakos , H.A. Dijkstra, M. Rietkerk & S.C. Dekker (Utrecht University)
- Sergio Gomez & Alex Arenas (Universidad Rovira Virgil, Tarragona)
- Albert Diaz-Guilera (Universidad de Barcelona)
- T. A. Schieber & M. G. Ravetti (Universidade Federal de Minas Gerais, Brazil)
- Panos M. Pardalos (University of Florida)

- School on "Nonlinear Time Series Analysis and Complex Networks in the Big Data Era", co-organized with Jesus Gomez-Gardenes and Hilda Cerdeira ICTP-SAIFR (Sao Paulo): February 19 – March 2, 2018
- Workshop on "Predicting transitions in complex systems", co-organized with K. Lehnertz and J. Hlinka Max Planck Institute for Physics of Complex Systems (Dresden): 23 – 27 April 2018

<cristina.masoller@upc.edu>

Papers at http://www.fisica.edu.uy/~cris/

- G. Tirabassi et al, "Interaction network based early-warning indicators of vegetation transitions", Ecological Complexity 19, 148 (2014).
- C. Masoller et al, "Quantifying sudden changes in dynamical systems using symbolic networks", New J. Phys. 17, 023068 (2015).
- A. Aragoneses et al, "Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser", PRL 116, 033902 (2016).
- T. A. Schieber et al, "Quantification of network structural dissimilarities", Nat. Comm. 8:13928 (2017).

