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Is there a way to quantify how close we are to the 

transition point? 

 

Goal: to develop reliable early warning indicators 

Bangladesh, 
Nature 2014 

Tipping points in ecosystems 



Examples from the output 

intensity of two laser systems 

 Polarization switching 

Semiconductor laser output intensity 

as the pump current increases 

 Transition to turbulence 

Time 

Fiber laser output intensity as 

the pump power increases 

Goal: convince you that 

 Novel data analysis tools can provide new insights into 

these phenomena. 

 Optical data can be useful for testing novel analysis tools. 



 How to compare time-evolving networks? 

How to detect (or to identify) transitions 

in complex systems? 

El Niño 

years 

La 

Niña 

years 

Tsonis and Swanson, PRL 100, 228502 (2008) 



Functional brain networks 

averaged 

node 

strength 

averaged 

weighted 

clustering 

coefficient 

Healthy subjects Epileptic patients 

M. Chavez et al., PRL 104, 118701 (2010) 

Goal: to develop a 

measure that allows 

quantifying network 

dissimilarities 



 

• Early-warning indicators of desertification transition 

 

• Quantifying sudden changes using symbolic networks 

 

• Emergence of temporal correlations in the optical laminar-

turbulence transition 

 

• Quantifying network dissimilarities 

Outline 



Early-warning indicators of 

desertification transition 

 Coauthors: G. Tirabassi (UPC), J. Viebahn, 

V. Dakos , H.A. Dijkstra, M. Rietkerk & S.C. 

Dekker (Utrecht University) 



 Bifurcation → eigenvalue with 0 real part 

 → long recovery time of perturbations 

 Critical Slowing Down (CSD) 

 CSD → High autocorrelation, variance, spatial 

correlation, etc. 

 

 Can we use “correlation networks” to detect tipping 

points? 

 

 “correlation networks”? 

Early warning indicators 



 w (in mm) is the soil water amount  

 B (in g/m2) is the vegetation biomass  

 Uncorrelated Gaussian white noise  

 R (rainfall) is the bifurcation parameter 

Desertification transition: 

model 

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011) 



Saddle-node bifurcation 

 

R<Rc: only desert-like solution (B=0) 

Rc = 1.067 mm/day   



Biomass B when R=1.1 mm/day 

100 m x 100 m = 104 grid cells 

Simulation time 5 days in 500 time steps 

Periodic boundary conditions   



Correlation Network 

Zero-lagged 

cross-correlation 

Threshold  

=0.2 gives p<0.05 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  

Adjacency matrix 



 Degree (number of links of a node) 

   

 

 Assortativity (average degree of 

the neighbors of a node) 

   

 

 Clustering (fraction of neighbors of 

a node that are also neighbors 

among them) 

Network analysis 



Results 

Mean degree 
Standard deviation of 

the degree distribution 

Sharp increase close to the transition captures the 

emergence of spatial correlations 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  



Network-based indicators 

‘‘Gaussianisation’’ of the clustering and of the assortativity 

distributions when approaching the tipping point  

clustering  

assortativity  

skewness  kurtosis  



Kullback–Leibler Distance (KLD) 

between 2 PDFs 

How to quantify 

‘‘Gaussianisation’’? 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  



 Indicators based in “correlation networks” can 

identify desertification transition in advance. 

 

 Open issue: the “Gaussianisation” might be a 

model-specific feature. 

Summary Part 1 

G. Tirabassi et al., Interaction network based early-warning indicators 

of vegetation transitions, Ecological Complexity 19, 148 (2014)  



Quantifying sudden changes 

using symbolic networks 
- “optical big data”: provides new insight & is 

useful for testing novel diagnostic tools 

Coauthors: A. Pons (UPC), S. Gomez & A. Arenas 

(Tarragona)  

Experimental data: S. Barland (INLN, Nice, France) & 

Y. Hong (Bangor University, Wales, UK) 



Method of nonlinear symbolic time-

series analysis: ordinal patterns 

─ Advantage: the probabilities uncover temporal correlations. 

 X= {…xi, xi+1, xi+2, …}  

 The OP probabilities allow identifying more 

expressed and/or infrequent patterns in the 

order of the sequence of data values. 

Brandt & Pompe, PRL 88, 174102 (2002) 

Random data? 

(OPs equally 

probable) 

─ Drawback: we lose information about the actual values. 

1 2 3 4 5 6 

  Ordinal analysis gives complementary information to 

that gained with other analysis tools.  



The number of patterns 

increases as D! 

Opportunity: turn a time-series into 

a network by using the patterns as 

the “nodes” of the network. 



The network nodes are the “ordinal 

patterns”, and the links? 

Adapted from M. Small (The University of Western Australia) 

• The links are defined in 

terms of the probability of 

pattern “” occurring after 

pattern “”. 

• Weighs of nodes: the 

probabilities of the 

patterns (i pi=1). 

• Weights of links: the 

probabilities of the 

transitions (j wij=1 i).  

Weighted and 

directed network 



Three network-based 

diagnostic tools 

• Entropy computed from the weights of the nodes (permutation 

entropy) 

 

• Entropy computed from weights of the links (transition 

probabilities, ‘01’→ ‘01’, ‘01’→ ‘10’, etc.) 

 

 

 

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc. 

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network) 



29/01/2018 23 

 x(i+1)=r x(i)[1-x(i)]  

C. Masoller et al,  

New J. Phys. 17, 023068 

(2015) 

First test the method 

with synthetic data: 

the logistic map 

Detects a transition 

that is not seen with 

Lyapunov analysis.  

D=4 

L=6000 



Polarization-resolved intensity: 

two sets of experiments  

• Time series recorded with 

laser current constant in time. 

• Record the turn-on of the 

orthogonal mode. 

• Time series recorded 

with laser current 

varying in time. 

• Record the turn-off of 

the fundamental mode. 

Time 

Time 

Is it possible to anticipate the PS? 

No if the mechanisms that trigger the PS are fully stochastic. 



Results for constant pump current & 

turn-on of the orthogonal mode 

C. Masoller et al, New J. Phys. 17 (2015) 023068 

Error bars computed from 100 non-overlapping windows with 

L=1000 data points each. Length of the pattern D=3. 

Despite of the 

stochasticity of 

the time-series, 

the measures 

“anticipate” the 

PS. 

Deterministic 

mechanisms 

involved. 



C. Masoller et al, New J. Phys. 17 (2015) 023068 

Second set of experiments 

Slightly different 

optical feedback 

conditions result 

in PS or no PS.  

 

Analysis done 

with D=3, error 

bars computed 

with 1000 time 

series L=500.  

Time-varying pump current & turn-off of the 

fundamental mode 



 In synthetic data: indicators based in symbolic 

networks characterize increase of complexity and 

detect transitions not captured by Lyapunov analysis. 

 

 In empirical data: they provide early warning 

indicators of polarization-switching. 

Summary Part 2 

C. Masoller et al, “Quantifying sudden changes in dynamical systems 

using symbolic networks”, New J. Phys. 17, 023068 (2015). 



Characterizing the laminar-turbulence 

transition in a fiber laser 

Low -- High pump power 

Experimental data from Aston University, UK 

(Prof. Turitsyn’ group) 

  



Most probable intensity 

E. G. Turitsyna et al. Nat. Phot. 7, 783 (2013) 

L=1 km,  

millions of modes 

Low High pump 

At the transition: 

Fiber laser 



Analysis of the intensity peaks 

higher than a threshold 

 
Each time series is first normalized to I=0 and =1 

Th = 2: number of 

peaks >104  for all 

values of the pump 

power 

L= 5x107 data points. 

Sampling time dt = 12.5 ps 



A time-series is represented as a graph, where each data point is a node 

Diagnostic tool:  

horizontal visibility graph (HVG) 

HVG method: B. Luque et al, PRE 80, 046103 (2009) 

  Unweighted and undirected graph 

Number of links 

Ordinal pattern 

D=3 

• Rule: data points i and j are connected if there is “visibility” 

between them: Imax,i and Imax,j > Imax,n for all n, i<n<j 

intensity peaks 

above Th = 2 



The resulting network 

How to characterize this network?  



 Degree distribution for 

various pump powers 

using Th=2. 

HVG analysis 

 Entropy of the degree 

distribution (normalized to the 

entropy of Gaussian white noise) 

 Degree Distribution (distribution of the number of links) 

 sharp transition detected. 

Aragoneses et al, PRL 116, 033902 (2016) 



Influence of the threshold 

 sharp 

transition 

detected 

with 

different 

thresholds. 

Raw data {…Ii …}  Th  {…Imax,i …} 

Aragoneses et al, PRL 116, 033902 (2016) 



When no thresholding 

Can we obtain more info. from the raw data? 

Raw data {…Ii …} 

 sharp 

transition not 

detected. 

Aragoneses et al, PRL 116, 033902 (2016) 



Ordinal analysis of lagged 

intensity data 

Aragoneses et al, PRL 116, 033902 (2016) 

Sharp variations not captured by linear correlation analysis. 

Pump power below, at, and above the transition. 

  ii IIACF  )(



=431 =496  Different 

coherent 

structures 

uncovered with 

different lags 

(sampling 

times). 

Aragoneses et al, PRL 116, 033902 (2016) 
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 The laser intensity dynamics was mapped to a 

complex network. 

 

 Sharp transition seen in thresholded data but not in 

raw data. 

 

 Specific time-scales detected at the transition, not 

captured by linear correlation analysis. 

Summary Part 3 

A. Aragoneses et al, “Unveiling temporal correlations characteristic 

of a phase transition in the output intensity of a fiber laser” 

PRL 116, 033902 (2016). 



Quantifying network 

dissimilarities 

Coauthors: T. A. Schieber, L. Carpi, M. G. 

Ravetti (Bello Horizonte, Brazil), A. Diaz-

Guilera (UB), P. M. Pardalos (Florida, US) 



 Degree distribution, closeness centrality, betweenness 

centrality, average path length, etc. 

 Provide partial information. 

 How to define a measure that contains detailed 

information about the global topology of a network, in a 

compact way? 

 Node Distance Distributions (NDDs) 

 pi(j) of node “i“ is the fraction of nodes that are connected 

to node i at distance j 

 If a network has N nodes: 

  NDDs = vector of N pdfs {p1, p2, …, pN} 

 If two networks have the same set of NDDs  they have 

the same diameter, average path length, etc. 

Complex network measures 



 The Network Node Dispersion (NND) measures the 

heterogeneity of the N pdfs {p1, p2, …, pN} 

 Quantifies the heterogeneity of connectivity distances. 

How to condense the information contained 

in the node-distance distributions? 

d = diameter 

Reminder: 

distance between 

P and Z 



Example of application: 

percolation transition 

 in a random network 

the Network Node 

Dispersion detects the 

percolation transition 

P=connection probability 

T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos,  

C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017). 



 Extensive numerical experiments demonstrate that 

isomorphic graphs return D=0 

 

Dissimilarity between two 

networks 

w1=w2=0.5 

compares the 

averaged 

connectivity 

compares the 

heterogeneity of the 

connectivity distances 



Comparing three networks with the 

same number of nodes and links 

D Hamming Graph 

Edit 

Distance 

N1,N2 0.25 12 6 

N1,N3 0.56 12 6 

N2,N3 0.47 12 6 



Comparing real networks 

to null models 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

Details in the supplementary information 

DS preserves 

the degree 

sequence; 

2.0 also 

preserves the 

degree 

correlation; 

2.1 also 

preserves the 

clustering 

coefficient; 

2.5 includes 

the clustering 

spectrum 



Best model of Power Grid 

Network? 

HVG 

T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos,  

C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017). 



Comparing real networks among 

them 

T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos,  

C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017). 



 Use HVG to transform EEG time-series into networks. 

 Weight between two brain regions given by 1-D(G,G’) 

 Identify two brain regions (called ‘nd’ and ‘y’), where the weight 

of the connections between these regions is higher in control 

than in alcoholic networks 

Comparing brain networks 

Hamming D 

T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos,  

C. Masoller and M. G. Ravetti, Nat. Comm. 8:13928 (2017). 



 New measure to quantify the heterogeneity of the 

connectivity paths of a single network.  

‒ Detects percolation transition in random networks. 

 

 New measure to calculate the “distance” between two 

networks 

‒ Can be applied to networks of different sizes. 

‒ Returns D=0 only if the two networks are isomorphic. 

 

 Ongoing work: application to real data. 

Summary Part 4 



Problem 

Work by P. Amil in collaboration with Irene Sendiña-Nadal 



At UPC: 

 Giulio Tirabassi 

 Andres Aragoneses 

 Laura Carpi 

 Antonio Pons 

 Carme Torrent 

 

Experimental data:  
 Polarization swithching data from 

S. Barland (Nice, France) and  

      Y. Hong (Bangor University, UK)  

 Fiber laser data from S.K. 

Turitsyn, N. Tarasov & D.V. 

Churkin (Aston University, UK) 

Coauthors 

Elsewhere: 
 J. Viebahn, V. Dakos , H.A. Dijkstra, 

M. Rietkerk & S.C. Dekker (Utrecht 

University) 

 Sergio Gomez & Alex Arenas 

(Universidad Rovira Virgil, Tarragona) 

 Albert Diaz-Guilera (Universidad de 

Barcelona) 

 T. A. Schieber  & M. G. Ravetti 

(Universidade Federal de Minas Gerais, 

Brazil) 

 Panos M. Pardalos (University of 

Florida) 



 School on “Nonlinear Time Series Analysis and Complex 

Networks in the Big Data Era”, co-organized with Jesus 

Gomez-Gardenes and Hilda Cerdeira  

    ICTP-SAIFR (Sao Paulo): February 19 – March 2, 2018 

 

 Workshop on “Predicting transitions in complex 

systems”, co-organized with K. Lehnertz and J. Hlinka  

Max Planck Institute for Physics of Complex Systems            

(Dresden): 23 – 27 April 2018 
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