Predicting Extreme Optical Pulses in Laser Systems

Cristina Masoller

Universitat Politecnica de Catalunya

Cristina.masoller@upc.edu

Campus d'Excel·lència Internacional

SIAM DS 2017 Snowbird, Utah

Extreme events in nature

Campus d'Excel·lència Internacional

Optical chaos: provides an opportunity to advance predictability.

Optical rogue waves

Solli et al, Nature 2007

- Optical systems can contribute to understand the mechanisms capable of triggering / suppressing extreme events.
- Optical systems generate "big data", valuable for testing diagnostic tools for "early warnings" of extreme events.
- The study of extreme pulses can yield new light into nonlinear & stochastic phenomena in optical systems.

Semiconductor lasers (diode lasers)

Widely used, inexpensive but easily perturbed

 Optically perturbed semiconductor lasers provide an inexpensive setup to study chaos and nonlinear dynamics.

Deterministic Optical Rogue Waves

Cristian Bonatto,¹ Michael Feyereisen,² Stéphane Barland,² Massimo Giudici,² Cristina Masoller,¹ José R. Rios Leite,^{2,3} and Jorge R. Tredicce^{2,3}

In our system, optical rogue waves can be

- deterministic, generated by a crisis-like process.
- controlled by noise and/or by current modulation.
- predicted with a certain anticipation time.

Governing equations

Campus d'Excel·lència Internacional

- \circ Complex field, E –Laser intensity ~ $|E|^2$
- Carrier density, N

These simple rate-equations provide good qualitative agreement with the experimentally observed intensity dynamics.

Bifurcation diagram in color code: log(number of pulses)

Campus d'Excel·lència Internacional

J. Zamora-Munt et al, PRA 87, 035802 (2013)

What triggers a RW?

Campus d'Excel·lència Internacional

A RW is triggered whenever the trajectory closely approaches the stable manifold of S2 (the "RW door")

Rogue wave predictability

Campus d'Excel·lència Internacional

J. Zamora-Munt et al, PRA 87, 035802 (2013)

UNIVERSITAT POLITÈCN A similar effect in the intensity dynamics BARCELONATECH Campus d'Excel·lència Internacional

Superposition of 52 pulses

Campus d'Excel·lència Internacional

Narrow channel also seen in other systems (G. Ansmann, R. Karnatak, K. Lehnertz, and U. Feudel, PRE 88, 052911 2013)

How can this effect be quantified?

Symbolic method of time-series analysis: Ordinal Patterns

Campus d'Excel·lència Internacional

Example: (5, 1, 7) gives "102" because 1 < 5 < 7

D=4 1 7 13 19 D=5: 1 8 14 20 D=5: 1 9 15 21 Permut 10 16 22 Alterna 12 18 24 4 $\ldots X_{j}$, X

D=5: 120 patterns Permutation entropy $s_p = -\sum p_i \log p_i$

Alternative: use a <u>lag</u> {... x_i , x_{i+1} , x_{i+2} , x_{i+3} , x_{i+4} , x_{i+5} ...}

Ord. Patt. label

Brandt & Pompe, PRL 88, 174102 (2002)

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Example of application

Campus d'Excel·lència Internacional

Characterizing the laminar-turbulence transition in a fiber laser

Experimental data from Prof. Turitsyn' group (Aston University, UK)

E. G. Turitsyna et al. Nat. Phot. 7, 783 (2013)

Ordinal analysis of lagged intensity data

Campus d'Excel·lència Internacional

 \Rightarrow Sharp variations not captured by correlation analysis.

Ordinal probabilities vs. lag

Campus d'Excel·lència Internacional

Circle map: minimal model of ordinal probabilities at the transition

Campus d'Excel·lència Internacional

Due to some type of locking ? Present work is aimed at understanding this similarity.

- Consider the sequence of intensity peak heights (red dots):
 {...I_i, I_{i+1}, I_{i+2}, ...}
- Possible order relations of three consecutive values:

We calculate the probability of the pattern that occurs before each high pulse:

If $I_i > TH$, we analyze the pattern defined by $(I_{i-3}, I_{i-2}, I_{i-1})$

Results: deterministic simulations

Model and parameters as in J. Ahuja et al, Optics Express 22, 28377 (2014). *N. Martinez Alvarez, S. Borkar, C. Masoller, EPJST in press (2017)*

Including spontaneous emission noise and current modulation

Campus d'Excel·lència Internacional

In the first case: 210 is a "good" warning. \Rightarrow "early warning pattern" varies with parameters and might not exist.

Analysis of experimental data (Nice)

Campus d'Excel·lència Internacional

Experimental data (Terrassa): optical feedback-induced dropouts

Campus d'Excel·lència Internacional

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

 \Rightarrow 210 is a "good sign" that a dropout is NOT likely to occur after this pattern

- In synthetic data: certain patterns of oscillations can be more (or less) likely to occur before the extreme pulses.
- In experimental data (work in progress): in order to identify patterns that anticipate the extreme pulses, noise needs to be filtered.
- The analysis of the pattern probabilities can provide complementary information to advance rogue wave predictability.
- Open issue: applicability to real-word time-series?

At UPC

- Nuria Martinez and Saurabh Borkar (IIT Guwahati)
- Andres Aragoneses, Jordi Zamora, Jose M. Aparicio Reinoso
- M. C. Torrent

Experimental data: S. Barland (Nice) and S. Turitsyn (Aston University)

Thank you for your attention!

Cristina.masoller@upc.edu

Papers at http://www.fisica.edu.uy/~cris/

- C. Bonatto et al, PRL 107, 053901 (2011).
- J. Zamora-Munt et al, PRA 87, 035802 (2013).
- J. A. Reinoso, et al, PRE 87, 062913 (2013)
- Aragoneses et al, PRL 116, 033902 (2016).
- N. Martinez, S. Borkar, C. Masoller, EPJST in press (2017).

