

Influence of Periodic Modulation in Rare and Extreme Optical Pulses

Cristina Masoller

UPC, Terrassa, Barcelona, Spain Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

2015 SIAM Conference on Dynamical Systems MS33: Rare Events in Stochastic Systems

Collaborators

Sandro Perrone

Ramon Vilaseca

Jordi Zamora Munt

Dhananjay Bhiku

Jatin Ahuja

Indian Institute of Technology, Guwahati, Assam, India

What is a rogue wave?

Campus d'Excel·lència Internacional

RWs are rare, ultra-high waves that fall outside (and far from) the main part of long-tailed probability distributions.

The Great Wave of Kanagawa, Katsushika Hokusai. Source: Wikipedia

- A RW: above twice the significant wave height (SWH). SWH = <highest 1/3 waves> that occur over a <u>certain</u> <u>period of time</u>.
- A RW: above <u>a certain threshold</u> ($<A> + 4-8 \sigma$)

Optical rogue waves

Campus d'Excel·lència Internacional

D. R. Solli et al, Nature 450, 1054, 2007

Since then, optical rogue waves are attracting increasing attention

Campus d'Excel·lència Internacional

You searched for: TOPIC: (optical rogue waves) ...More

This report reflects citations to source items indexed within All Databases.

Published Items in Each Year

The latest 20 years are displayed.

Citations in Each Year

RWs in semiconductor lasers

Campus d'Excel·lència Internacional

Optically injected semiconductor lasers provide an inexpensive and controllable setup to study RWs

Key parameters and main dynamical regimes

o Injection ratio

• Frequency detuning $\Delta v = v_s - v_0$

- Regimes:
 - Stable locking: stable output at the frequency of the master laser
 - Regular oscillations
 - Excitability and Chaos

Adapted from J. Ohtsubo, *Semiconductor Lasers: Stability, Instability and Chaos.* Springer, 2006.

- Inside the locking region: increased resonance frequency and modulation bandwidth.
- <u>Outside the locking region</u>: regular oscillations, with tunable frequency (controlled by the injection parameters).

E. K. Lau et al, Opt. Express 16, 6609 (2008)

S-C Chan et al, Optics Express 15, 14921 (2007)

Chaotic oscillations, bistability, etc.

Lyapunov diagram

Bifurcation diagram

V. Kovanis et al, EPJD 58, 181 (2010)

Instabilities in lasers with an injected signal

J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni

178 J. Opt. Soc. Am. B/Vol. 2, No. 1/January 1985

Experimental observation

Campus d'Excel·lència Internacional

C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, "*Deterministic optical rogue waves*", PRL 107, 053901²(2011)

Governing equations

- $\circ~$ Complex field, E (photon number $\propto~|E|^2$)
- Carrier density, N

Deterministic simulations (β_{sp} **=0)**

14

- What triggers a rogue wave?
- Can rogue waves be predicted?
- Can rogue waves be controlled?

What triggers a RW?

Campus d'Excel·lència Internacional

Threshold: <H> + 8σ

Fixed point solutions

Campus d'Excel·lència Internacional

 transient spikes

Stable manifold of S2: "RW door"

A RW is triggered when the trajectory closely approaches the stable manifold of S2 (RW door)

Why chaos with RWs and chaos without them?

- In between the attractor originated from S3 and the "RW door" there is a "barrier": the stable manifold of S1
- A crises-like process enables access to the region where the "RW door" is.

- What triggers a rogue wave?
- Can rogue waves be predicted?
- Can rogue waves be controlled?

Superposition of 500 time series at the RW peak

J. Zamora-Munt et al, PRA 87, 035802 (2013)

Influence of noise & RW threshold

Campus d'Excel·lència Internacional

22

Similar behavior also in a laser with optical feedback

Campus d'Excel·lència Internacional

J. A. Reinoso, J. Zamora-Munt and C. Masoller. PRE 87, 062913 (2013)

Using a lower threshold

J. A. Reinoso, J. Zamora-Munt and C. Masoller. PRE 87, 062913 (2013)

- What triggers a rogue wave?
- Can rogue waves be predicted?
- Can rogue waves be controlled?

Influence of noise

Campus d'Excel·lència Internacional

Weak noise reduces the number of RWs, strong noise increases it

Influence of current modulation when RWs are deterministic

(point A)

$$\mu = \mu_0 + \mu_{\text{mod}} \sin(2\pi f_{\text{mod}} t)$$

S. Perrone, J. Zamora Munt, R. Vilaseca and C. Masoller, PRA 89, 033804 (2014)

Role of noise

Campus d'Excel·lència Internacional

The "safe region" is robust to noise.

- Without modulation: noise reduces the number of RWs
- With modulation: noise does not affect the RW number

Influence of current modulation when there are no deterministic RWs (Point B)

White = No RWs

Current modulation can induce RWs but the "safe region" remains and is robust to noise.

Why RWs are suppressed?

Modulation suppressed extreme pulses: We can think of controlled avalanches in a snow-covered mountain that reduce the accumulated snow that could feed a large and dangerous avalanche.

Outside the "safe parameter region": role of the modulation phase

Campus d'Excel·lència Internacional

J. Ahuja et al, Optics Express 22, 28377 (2014).

Influence of the modulation frequency

Faster modulation

No "safe" phase window but RWs likely occur at specific values of the modulation phase

- In our system RWs can be deterministic, generated by a crisis-like process.
- RWs can be **predicted** with a certain anticipation time.
- RWs can be controlled by noise and/or modulation.
 - Within a "<u>safe parameter region</u>": modulation fully suppresses RWs.
 - Outside this safe region: RWs occur in an specific window (or for specific values) of the modulation phase.

THANK YOU FOR YOUR ATTENTION ! <cristina.masoller@upc.edu> papers available at: http://www.fisica.edu.uy/~cris/

- C. Bonatto et al, *Deterministic optical rogue waves*, PRL 107, 053901 (2011).
- J. Zamora-Munt et al, *Rogue waves in optically injected lasers: origin, predictability and suppression,* PRA 87, 035802 (2013).
- S. Perrone et al, Controlling the likelihood of RWs in an optically injected semiconductor laser via direct current modulation, PRA 89, 033804 (2014).
- J. Ahuja et al, Rogue waves in injected semiconductor lasers with current modulation: of the modulation phase, Optics Express 22, 28377 (2014).