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Outline of the talk
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 Applying network concepts to the Earth’s climate

 Ordinal patterns nonlinear time-series analysis 

 Results

 Conclusions



- Scientific collaborations & social networks,

- Biological & ecological networks,

- Brain functional networks,

- Airport networks,

- Internet traffic, etc, etc

Complex networks 
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Stephen G. Eick, visualcomplexity.com



Complex networks 
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Eguiluz et al, PRL 2005

 network theory can improve our 
understanding of spatially 
extended complex systems such as 
the brain or the climate. 

 The network approach considers 
such systems as being composed of 
dynamically interacting subsystems
whose functional interdependencies
are reflected as links.



Climate networks 
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Donges et al, Eur. Phys. J. Spe. Top. 2009: 
Understanding the Earth as a Complex System

 constructed over a 
regular grid (nodes) 
covering the Earth's 
surface.

 interdependencies are 
reflected as links

 graphical representation 
of the area-weighted 
connectivity



– hours to days,
– months to seasons, 
– decades to centuries,
– and even longer time-scales...
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Climate system: wide range of time scales

 Occurs across the tropical Pacific Ocean with  5 years 
periodicity. 

 variations in the surface temperature of the tropical eastern 
Pacific Ocean (warming: El Niño, cooling: La Niña) 

 variations in the air surface pressure in the tropical western 
Pacific (the Southern Oscillation). 

 The two variations are coupled: 
El Niño (ocean warming)  -- high air surface pressure,
La Niña (ocean cooling)   -- low air surface pressure.

Example: El Niño/La Niña-Southern Oscillation (ENSO)
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Surface Sea Temperature anomalies 
during La Niña (November 2007)

Source: Wikipedia
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State of the art: climate modeling

Nature, February 2010

MODEL EVOLUTION

Adapted from Elliott and Maltrud,  Los Alamos Nat. Lab.

Our climate: a (very!) Nonlinear 
Complex System



 Models are increasingly sophisticated but... methods for 
data analysis remain dominated by linear thinking (e.g., 
expectations of continuity and extrapolation of trends).

 Nonlinear thinking is particularly important when dealing 
with Climate Change, as adaptation strategies strongly 
depend on the accuracy and reliability of the forecasts.

C. Masoller
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Climate data analysis



Climate change

Source: 
http://data.giss.nasa.gov/gistemp/graphs/(12/1/2011)
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Global  Warming

Global Annual Mean Surface Air 
Temperature (SAT) Anomaly

Source: 
Vermeer and Rahmstorf, PNAS 2009

Sea Level Rise



 Our complex-systems approach to climate data analysis is 
nonlinear in three aspects: 
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Climate nonlinear analysis

xi(t) = monthly-averaged SAT anomaly in node “i",

xj(t) = monthly-averaged SAT anomaly in node “j”.

SAT = surface air temperature
Anomaly = annual cycle removed

1. We use a nonlinear measure to quantify the 
degree of „statistical interdependency‟ 
between the climate in two nodes “i“ and “j” :
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The data: SAT Anomalies
January 1949 -- December 2006 

In each ‘node’ 696 data points (58 years x 12 months)
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 Reanalysis of National Center for Environmental Prediction, 
National Center for Atmospheric Research (NCEP-NCAR, 
USA). 

 Reanalysis = run a sophisticated model of general 
atmospheric circulation and feed it with the available 
experimental data, in the different points of the earth, at 
their corresponding times. 

 This process restricts the solution of the model to one as 
close to reality as possible in regions where there are data 
available, and to a solution physically “plausible” in regions 
where no data is available.

Where does the data comes from? 
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 Linear: |Cross-correlation coefficient|

 We use a Nonlinear Measure: 

the Mutual Information 

 Mij = 0  {xi} and {xj} are independent:

Measures of statistical interdependency
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 Our methodology is nonlinear also because: 

2. We use a threshold to define the links: “i“ “j” only if Mij >.



 PDFs can be calculated from SAT anomalies with histogram method.

Ordinal Pattern time-series analysis
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 The central paradigm is that in 
climatological data there are patterns of 
oscillations that repeat from time to time.

 In each node we transform the SAT time-series into a sequence of 
“Ordinal Patterns (OPs)” and compute the PDF of the various OPs.

Time (months)

 But our methodology is nonlinear also because: 

3. We use nonlinear time-series analysis 
(ordinal patterns) to compute the PDFs



OPs take into account the order relations of values in a sequence of values:

Geometrical representation of 6 OPs of length 3:
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Ordinal Patterns

 )( ),1( ..., ),2( ),1( ),0( ..., ),2( ),1( NxNxtxtxtxxx 

1 2 3

4 5 6
PDF

Brandt & Pompe, PRL 2002

 Good statistics if:   N >> D! 
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One can construct the OPs comparing monthly-
averaged SAT anomalies on:

consecutive years or     consecutive months

17

60 80 100 120

-6

-4

-2

0

2

4

6

Ordinal pattern analysis of 
climatological data

Time (months)

)]24( ),12( ),([  txtxtx iii )]2( ),1( ),([  txtxtx iii

(inter-annual time-scale) (intra-season time-scale)

 Good statistics if:   
N=696 >> D!  D=3,4,5

3! = 6, 4! = 24, 5! = 120



D=4

PDF defined from ordinal patterns, 
concatenating four consecutive years
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18Barreiro, Martí and Masoller, Chaos 21, 013101 (2011)

No threshold (all the 

significant links)
Higher threshold (only 

the strongest links)

Colors code the Area Weighted Connectivity

With a threshold such 

that the network has 1% 

of the total links



Area to which the “hub” node is 
connected
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D=5

Longer ordinal pattern

C. Masoller

)]48(),36( ),24( ),12( ),([  txtxtxtxtx iiiii

20

Colors code the area weighted connectivity

No threshold (all the 

significant links)
With a threshold such 

that the network has 1% 

of the total links

Most of the 
links that 
exist for D=4 
remain for 
D=5.



D=5

D=4           

OPs constructed by concatenating 
consecutive months
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• 1% and 0.1% 
connectivity: 
very different 
networks.

• Stronger links 
(0.1%): the 
network is 
almost the 
same for D=4 
and D=5.
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When using the |cross-correlation| as a 
measure of statistical interdependency
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Similar results are obtained 

when using the Mutual 

Information, with PDFs defined 

in terms of histograms of SAT 

anomalies.
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Longer memory effects?

D≥6 ? 

Problem:  the number of possible ordinal patterns for D=6 is  6! = 720. 
the length of the time series is N=696 (58 years)

Not enough data!

A possible solution: Binary representations
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For binary patterns of length D,  the # of possible patterns is 2D

For D=6, 26 = 64 << 720

s = 1 if x > xo, else s=0

SAT anomalies: x0 = 0



D=5, 

25=32

Binary representation, concatenating 
consecutive years
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D=6, 

26=64

Most of the 
links that 
exist for 
D=5 remain 
for D=6.



Binary representation, concatenating 
consecutive months
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D=5

25

D=6

• 1% and 0.1% 
connectivity: 
very different 
networks.

• Stronger links 
(0.1%): the 
network is 
almost the 
same for D=5 
and D=6.



Influence of the pattern time interval keeping
fixed the pattern size (D=6) and the network 

density (0.1%)
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6 months 1 year 2 years
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 We have shown that ordinal patterns and symbolic analysis are 
powerful tools for the analysis of the large-scale topology of the 
climate network.

 The success of the method is based on an appropriate partition of 
the phase space that results in a probability distribution function 
(PDF) that fully characterizes the diversity of patterns present 
in the climate. 

 We applied the method to the analysis of monthly-averaged Surface 
Air Temperature anomalies.

 Ordinal and Binary Patterns covering different time intervals 
(intra-season and inter-annual) reveal  long memory processes.

 Future work: detection of directionality and causal relations.

THANK YOU FOR YOUR  ATTENTION 

Summary and future work
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