Quantifying diversity in multiplex networks

Laura Carpi,¹ Tiago Schieber,² Panos Pardalos,³ Gemma Marfany,⁴ <u>Cristina Masoller</u>,⁵ Albert Diaz-Guilera,⁴ and Martin Ravetti²

¹Centro Federal de Educacao Tecnologica de Minas Gerais
 ²Universidade Federal de Minas Gerais
 ³University of Florida
 ⁴Universitat de Barcelona
 ⁵Universitat Politecnica de Catalunya

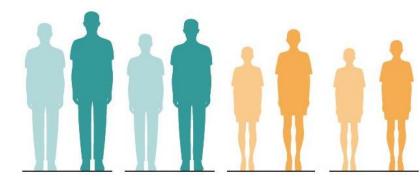
Campus d'Excel·lència Internacional

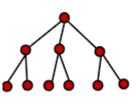
What is diversity?

Takes into account three characteristics of a population:

- Diversity in some attributes

 (e.g. atoms with different
 masses; people with different
 heights),
- Diversity of types (e.g., atoms or molecules; males or females),
- Diversity in configuration (e.g., configuration of atoms in a molecule; hierarchical or unstructured relations).

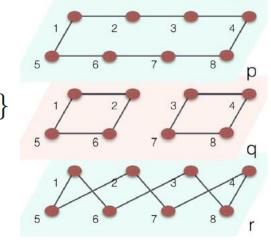




In the context of multiplex networks: what is diversity?

 $M (N \times N)$ adjacency matrices, $\mathcal{A} = \{A^{[1]}, A^{[2]}, \dots, A^{[M]}\}$

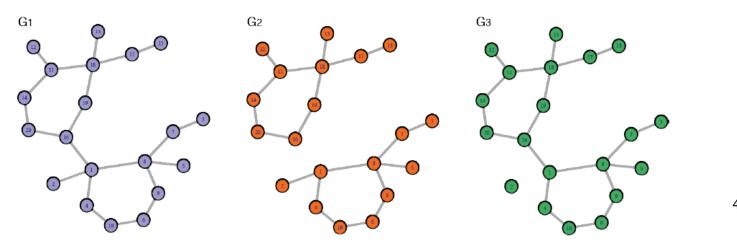
- Different configurations (connection paths) of the set of elements
 - the nodes
 - the layers
- Two types:
 - local: paths that a node has in the different layers;
 - global: how diverse the layers are.
- To quantify diversity we first need to define a "distance" to compare
 - the paths of a node in the different layers,
 - the different layers.



Some network distances

$$d_{\text{Hamming}}(\mathbf{y}_1, \mathbf{y}_2) = \sum_{i \neq j}^{N} \left[A_{ij}^{(1)} \neq A_{ij}^{(2)} \right]$$

- Graph Edit distance: operations required to make graph G isomorphic to graph H.
- Entropy distances: entropy-like measures associated with distributions extracted from the graphs.
- Spearman's correlation coefficient: rank correlation between sorted lists of vertices of the two graphs.
- Etc.
- Main problem: not all the links have the same importance.



Node distance distribution

- NDD of node i in layer p: N^p_i (d) is the fraction of nodes that are at distance d (shortest path) from node i in layer p.
- The set of N distributions, N^p₁ N^p_N, contains information about the global topology of layer p, in a compact way, and can be used to define a distance between unlabeled graphs.
- If two graphs have the same set of NDDs \Rightarrow they have the same diameter, average path length, etc.

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017)

Transition matrix of a layer

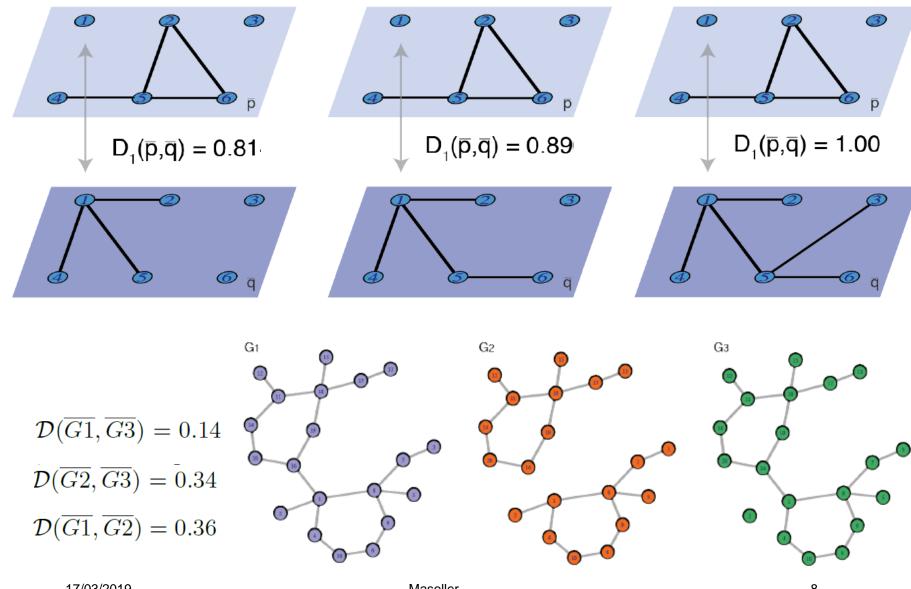
- T^p is the adjacency matrix of layer p, rescaled by the degree of each node.
- T^p_{ij} is the probability that, in layer p, node j is reached, in one step, by a random walker located at node i in p.
- It contains information about the local topology of layer p.

1) To quantify the differences of the connectivity paths of a node in two layers,

$$\mathcal{D}_i(\overline{p}, \overline{q}) = \frac{\sqrt{\mathcal{J}(\mathcal{N}_i^{\overline{p}}, \mathcal{N}_i^{\overline{q}})} + \sqrt{\mathcal{J}(T_i^{\overline{p}}, T_i^{\overline{q}})}}{2\sqrt{\log\left(2\right)}}$$

- 0 indicates that node i has identical connectivity paths in layers p and q,
- I indicates that node i is not connected (or not active) in one layer, while there are paths connecting i to all nodes in the other layer
- 2) To quantify differences between layers p and q

$$\mathcal{D}(\overline{p},\overline{q}) = \langle \mathcal{D}_i(\overline{p},\overline{q}) \rangle_i$$



17/03/2019

Masoller

8

Diversity measure

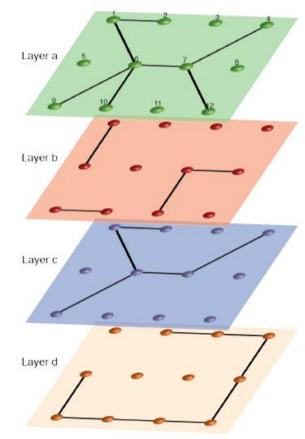
- Main idea: the diversity of a system is defined by the distances between its elements: the larger the distances, the more different the elements are, and the more diverse the system is.
- The distance between the element $\mathbf{g} \not\subset \mathbf{S}$ and the set S, **D(g; S)**, is the smallest distance between \mathbf{g} and any of the elements of S, $\mathcal{D}(\overline{g}, S) = \min_{\overline{s_i} \in S} \mathcal{D}(\overline{g}, \overline{s_i})$
- Recurrent def.: $U(S) = max_{\overline{s_i} \in S} \{ U(S \setminus \overline{s_i}) + \mathcal{D}(\overline{s_i}, S \setminus \overline{s_i}) \}$ U(S)=0 if |S|=1
- Diversity increases when a different element is included

$$U(S \cup \overline{g}) \ge U(S) + D(\overline{g}, S)$$

Example

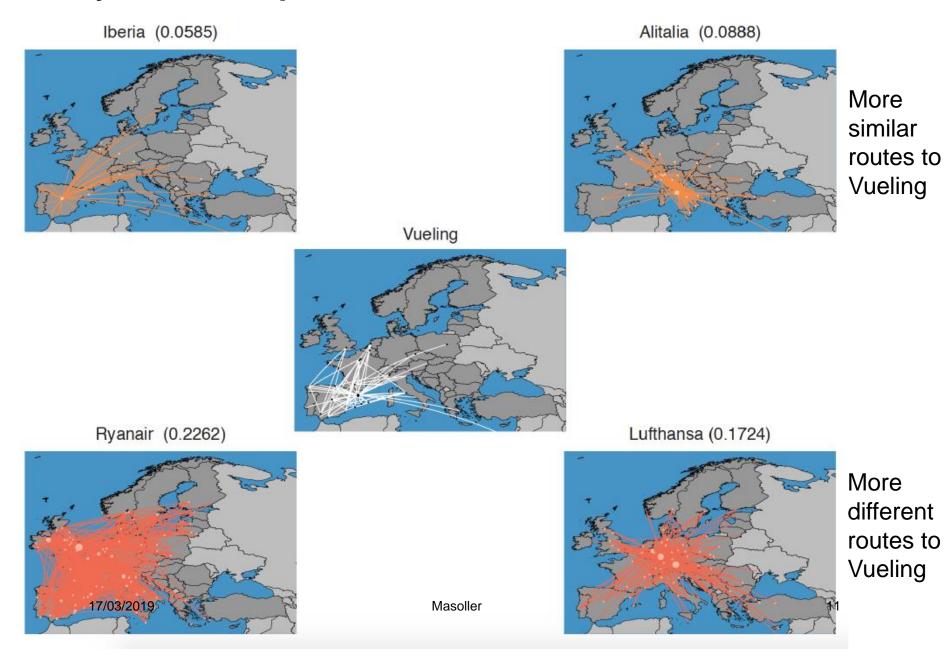
- Step 0: D(a, b)=0.70, D(a, c)=0.21, D(a, d)=0.79, D(b, c)=0.58, D(b, d) =0.69, D(c, d)=0.80
- Step 1: S = {a, b, c, d}, layers a and c have the smallest distance value, and c is the layer that less contributes to the diversity of S, as it is closer to the remaining layers. Then, the first step gives U(S) = U(S1) + 0.21 where S1 = S-c.
- Step 2: In S1 layers b and d present the smallest distance value, and b is the layer that less contributes to the diversity of S1. Therefore, U(S1) = U(S2) + 0.69 where S2 = S1 b = {a, d}.
- Step 3: U(S2) = D(a, d).

 \Rightarrow U(S) = 0.21 + 0.69 + 0.79 = 1.69



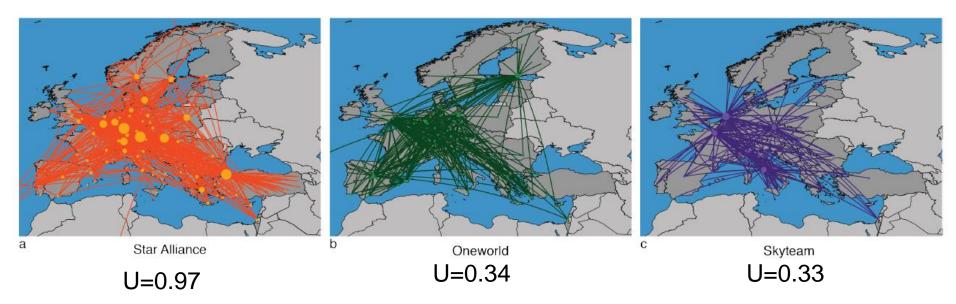
Carpi et al, Sci. Reports 9, 4511 (2019)

Analysis of Europe air traffic network



Diversity ordering:

Elements can be ordered in terms of their contribution to the diversity of the set.



Diversity ordering of Star Alliance (from less to more contribution):

Brussels Airlines (BEL), Swiss Air (SWR), Polish Airlines (LOT), Air Portugal (TAP), Aegean Airlines (AEE), Austrian Airlines (AUA), Scandinavian Airlines (SAS), Turkish Airlines (THY), Lufthansa (DLH)

17/03/2019

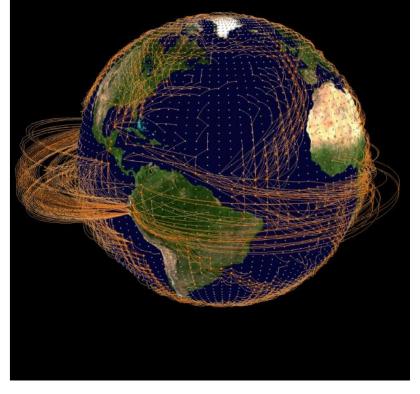
Masoller

To summarize

- New distance between unweighted labelled graphs.
- Used to define the diversity of the connectivity paths of a node in the different layers, and the diversity of the connectivity paths of the whole set of layers.
- Analysis of air alliances reveals which airlines, when joining an alliance, optimally increase the diversity, bringing new routes while minimizing overlapping ones; and which ones, when leaving the alliance, less compromise the diversity of the routes offered by the alliance.
- Other applications: Carpi et al, Sci. Reports 9, 4511 (2019)

Networks in Climate

Henk A. Dijkstra, Emilio Hernández-García, Cristina Masoller and Marcelo Barreiro



Cambridge University Press 2019

Advertisement

EU FP7 LINC (Learning about interacting networks in climate)

\Downarrow

H2020 CAFÉ (Climate advanced forecasting of extremes)

Marie Curie PhD positions available

<cristina.masoller@upc.edu>
http://www.fisica.edu.uy/~cris/

THANK YOU FOR YOUR ATTENTION !

