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‒ Laser nonlinear dynamics

‒ Neuronal dynamics

‒ Complex networks

‒ Climate data analysis

‒ Biomedical data analysis

‒ Tipping points

‒ Extreme events

Research lines



Lasers, neurons, climate, complex systems?
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Ocean rogue wave (sea surface

elevation in meters)

Polarization switching 

Laser & neuronal spikes

Extreme optical pulse (optical rogue wave)

Laser turn-on



Courtesy of  Henk Dijkstra (Ultrech University)

Nonlinear climate data analysis

Why a complex systems perspective?



Time series of climatic variables are available with 

high spatial and temporal resolution

Credit: G. Tirabassi (UPC)



Climate dynamics has a wide range of temporal scales

An ‘‘artistic representation’’ of the power 

spectrum of climate variability (M. Ghil 2002).

Outline of this talk:

 Univariate analysis
─ Hilbert analysis

 Bivariate analysis
─ Mutual information, 

Transfer entropy

 Multivariate analysis
‒ Climate networks 
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1) Univariate analysis tool: The Hilbert Transform (HT)

Surface air temperature (SAT)

HT[sin(t)]=cos(t)



We analyzed a global dataset of surface air temperature

 Spatial resolution 2.50 x 2.50  10226 time series

 Daily resolution 1979 – 2016  13700 data points

Where does the data come from?

 Freely available from European Centre for Medium-

Range Weather Forecasts (ECMWF). 

 Reanalysis = general atmospheric circulation model 

feed with empirical data, where and when available 

(data assimilation).



Which information carries the Hilbert phase? 

In color code the cos() averaged over all July 1 in the period 

1979 – 2016.

http://www.fisica.edu.uy/~cris/videos/map_typical.mp4
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ENSO (El niño / southern oscillation)



El Niño period

(October 2015)

La Niña period

(Octubre 2011)



How do the seasons evolve?

Temporal evolution of the cosine of the Hilbert phase
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Research questions

Relative variation is considered significant if: 
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Can we use the Hilbert amplitude to identify regions where 

the effects of climate change are more pronounced?

Can we quantify these effects?

Relative decadal variations:



D. A. Zappala, M. Barreiro, C. Masoller, Earth Syst. Dynamics 9, 383 (2018)

Relative decadal variations 



 Decrease of precipitation (due deforestation in Amazonas),

solar radiation heats the ground.

 Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.

Artic

Amazonas



2) Bivariate analysis of surface air temperature anomalies
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J. I. Deza, M. Barreiro, and C. Masoller, “Assessing the direction of climate interactions by 

means of complex networks and information theoretic tools”, Chaos 25, 033105 (2015).

Mutual Information



Intra-season 

102 (3)

Intra-annual 

012 (1)

Inter-annual 

120 (4)
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The Mutual Information can be 

computed from the probabilities 

of symbols (ordinal patterns)
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Pdf of 

data 

values

3 months

ordinal 

patterns 

Inter-

annual

ordinal 

patterns 

3 years

ordinal 

patterns 

Ordinal analysis separates the times-scales of the interactions

J. I. Deza, M. Barreiro, C. Masoller, “Inferring interdependencies in climate networks constructed 

at inter-annual, intra-season and longer time scales”, Eur. Phys. J. Special Topics (2013).



Directionality analysis using Transfer Entropy
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J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).

TE (x,y) = MI (x, y|x)

TE (y,x) = MI (y, x|y)

DI:  TE(x,y) - TE(y,x)



Directionality Index: results consistent with known 

climatic interactions
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J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).



Problem: Transfer Entropy is computationally demanding
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A “simple” solution: use the TE expression that is valid for 

Gaussian processes [ MI = -1/2 log(1-2) ] 

For Gaussian processes, TE is equivalent to Granger 

causality.

Does this work? Check it out:

https://doi.org/10.1038/s41598-021-87818-3



C. W. J. Granger

past of 𝑋1
Residual 

error

𝑋2 → 𝑋1

Hypothesis: X1 and X2 are described by linear autoregressive 

processes

If ൻ ۧ𝐸′
1(𝑡) < ۦ ۧ𝐸1(𝑡)

Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 37, 424–438 (1969). 

Granger Causality
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NINO3.4 AIR

Yearly 

sampled (152)

Monthly 

sampled (1836)

pTE

GC

TE

0.04 s

NINO3.4 AIR
0.5 s

NINO3.4 AIR NINO3.4 AIR
0.4 s 0.9 s

NINO3.4 AIR NINO3.4 AIR
1 s 68 s

IAAF
T

Application to NINO3.4  All India Rainfall



For two time-series of 500 data points (1 data point 

per month, 40 years):

TE:112 ms but pTE: 4 ms

How much time can we save?
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8000 grid points (high resolution)

 64 x 106 pairs

 829 days (TE) vs. 29 days (pTE).

(without “surrogate” analysis)

https://github.com/riccardosilini/pTE
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“Degree”

(number of links)

3) Multivariate analysis: Brain / climate networks

“Area 

weighted 

degree”



Ordinal analysis allows to identify the time scale of the links
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Longer 

time scale 



increased 

connectivity

Area weighted degree Links of a node in El Niño area



Another approach: Directed network from climatic indices
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R. Silini, G. Tirabassi, M Barreiro, L. Ferranti, C. Masoller, “Assessing causal dependencies 

in climatic indices”, Climate Dynamics 61, 79 (2023).

Links defined with pTE, using different lags



1. Hilbert analysis uncovers changes in large-scale patterns 

of atmospheric variability.

2. A reliable detection of bivariate (weak) climatic interactions 

is challenging; results depend on the method, data 

resolution, temporal scale, etc.

3. Next steps: compare different methods, identify high-order 

causal interactions, establish links to extreme events.  

Nonlinear climate data analysis: very active and growing 

research field, with many applications and many challenges!

Take home messages



Funding
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Job announcement
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https://belightproject.eu/

Doctoral network BE-LIGHT offers

11 PhD positions, 3-year contracts


