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Research in our lab: nonlinear 

dynamics of semiconductor lasers 

 Goal: are optical spikes similar 

to neuronal spikes? 

 Potential for ultra-fast brain-

inspired optical information 

processing? (ms vs ns-s) 

 Response to periodic forcing? 

Laser Mirror 

 



 Introduction 

The delayed Lang-Kobayashi equations: stochastic and high-

dimensional dynamical system 

 

 Method of analysis and experimental setup 

 

 Results 
• Inferring signatures of determinism 

• Transitions & hierarchical clusters in the symbolic dynamics 

• Minimal model 

• Response to periodic forcing 

 

 Conclusions and take home message 

Outline 
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 Widely used in:  
 Communications 

 Data storage (CDs, DVDs …) 

 Barcode scanners, laser printers, computer mice 

 Life sciences (imaging, sensing …)  

 Etc. 

 

 Feedback induces nonlinear dynamics: 
 Multi-stability 

 Regular pulsing 

 Extreme pulses 

 Chaos, intermitency … 

Semiconductor lasers 
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Laser Mirror 
 

Kathy Ludge: “Nonlinear Laser Dynamics: From 

Quantum Dots to Cryptography”, Wiley (2012).  

ISBN: 3527411003  
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R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980) 

|E|2  photon number (output intensity) 

 

N  number of carriers (electron-holes) 
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 = feedback strength 

 = feedback delay time 

 = pump current  

 (control parameter) 

Gain: 



Model predictions 

 In deterministic 

simulations: the spikes 

are transient. 

A. Torcini et al, Phys. Rev. A 74, 063801 (2006) 

J. Zamora-Munt et al, Phys Rev A 81, 033820 (2010) 

Laser 

intensity 

 But in stochastic model simulations: bursts of dropouts. 

7 

 In the experiments: which dropouts 

are triggered by noise and which 

ones are deterministic? 

 Is there any information in the spike sequence? 

 Can we infer signatures of underlying determinism? 



Problems and strategy 

8 

 Our strategy: event-level 

description. We analyze 

the sequence of inter-

spike-intervals (ISIs): 

 Main problem: we can measure only one variable (the laser 

output intensity). 

 Also a problem: the 

detection system 

(photodiode, oscilloscope) 

has a finite bandwidth that 

gives very limited 

temporal resolution. 

Ti = ti+1 - ti 



 Examples: 

─ Intervals between threshold crossings and barrier 

crossings,  

─ Neurons: inter-spike intervals (ISIs), 

─ Human communication: inter-event user times (SMS, 

emails, Twitters). 

─ Earth and climate: time-intervals between 

earthquakes, extreme events (tornados, rainfalls) etc. 
 

 

Event level description  of 

complex systems 
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Outline 
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 Introduction 

 

 Method of analysis and experimental setup 

 

 Results 

 

 Conclusions and take home message 



Ordinal Patterns 
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─ Advantage: the probabilities of the patterns unveil serial 

correlations. 

─ Drawback: the set (5,1,100) also gives “102”. 

 X= {…xi, xi+1, xi+2, …}.  

Example: (5, 1, 7) gives “102” because 1 < 5 < 7 

Brandt & Pompe, PRL 88, 174102 (2002) 

(in our case: sequence of inter-spike-intervals) 



Number of possible 

ordinal patterns: D! 

D=4 

12 

D=5 

 How to select the size of the pattern? 

Optimal D depends on: 

─ The length of the data. 

─ The length of correlations in the data. 

 For optical spikes: D=2  (D=3) unveil 

correlations among 3 (4) spikes 

012 
210 



 Widely used to analyze the output signals of complex systems 

- Financial, economical 

- Biological, life sciences 

- Geosciences, climate 

- Physics, chemistry, etc 

 

 The identification of patterns in the sequence of events allows for:   

─ Model validation, parameter estimation 

─ Classification of dynamical behaviors (pathological, healthy) 

─ Predictability - forecasting 
 

 Ordinal analysis has been able to: 

- Distinguish stochasticity and determinism 

- Quantify complexity 

- Identify couplings and directionality. 

Ordinal Analysis 
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An illustrative example 

14 

Classifying cardiac biosignals using ordinal pattern statistics 

 

congestive heart failure (CHF) vs healthy subjects.  



Outline 
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 Introduction 

 

 Method of time-series analysis and experimental setup 

 

 Results 

 

 Conclusions and take home message 
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Laser Diode 50/50 Beamsplitter  

External 

reflector 

Detector 
to Oscilloscope 

(1 GHz) 

Temperature 

and pump 

current 

controller 

to Optical 

Spectrum Analizer 

External cavity - 45 cm 

Hitachi Laser Diode (HL6724MG) 

nm 

5mW 

~ 7% threshold reduction 
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• Inferring signatures of determinism 

• Transitions & hierarchical clusters in the symbolic dynamics 

• Minimal model 

• Response to periodic forcing 

 

 Conclusions and take home message 
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Spiking dynamics 
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Probabilities of 01 and 10 reveal 3-spike correlations 

 

Null Hypothesis: random spikes  P(01) = P(10) 

Low pump current Higher pump current 

ISI  

Histograms 



3 spike correlations 

10 

01 

Consistent with 

stochasticity at low 

pump current, but 

signatures of 

determinism at high 

pump current. 

N. Rubido et al, Phys. Rev. E 84, 026202 (2011) 
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At low pump current: are the spikes really 

random? New experiment 

A. Aragoneses et al, Scientific Reports 3, 1778 (2013) 
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D=2 D=3 



Also in another data set recorded at a 

different temperature (T=20 C) 
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Pump current  (mA) 

P-

1/2 P-

1/6 

Pump current 

D=2 D=3 



Recorded data Surrogated data 
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Are the results significant?  

Error bars computed with a binomial test, gray region is consistent with N.H. 



Which spikes are triggered by noise?   
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We use a threshold to 

classify the intervals as 

short or long 

Inter-dropout-intervals (ns) 
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Constructing patterns with 2 

consecutive SIs or LIs 

 At high current: significant 

differences 

─ LIs consistent with 

random events 

─ SIs more deterministic. 

 

 But at low current, the spikes 

can not be distinguished. 

Pump current (mA) 
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P-

1/2 

Similar results were obtained with D=3 OPs 



Influence of the threshold used 

to classify as LIs and SIs 

0.85 T* 

Error bars computed with 

a binomial test, gray 

region consistent with NH 
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 LIs have statistical features as close as possible to 

random events: 

─ Exponential distribution of values 

─ Uniform distribution of pattern probabilities 

 

 Good statistics: there are enough consecutive LIs 

and SIs 

─ The NH region is sufficiently narrow 

─ For the LIs, the error bars are in the NH region  

─ For the SIs, the error bars are out of the NH region. 

 

Tips to chose a good 

classification threshold 
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Outline 

14/05/2015 27 C. Masoller 

 Introduction 

 

 Method of time-series analysis and experimental setup 

 

 Results 
• Inferring signatures of determinism 

• Transitions & hierarchical clusters in the symbolic dynamics 

• Minimal model 

• Response to periodic forcing 

 

 Conclusions and take home message 



26 26.5 27 27.5 28
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

012

021

102

120

201

210

T=18 C T=20 C 

Ordinal analysis unveils 

new information 

There is a hierarchical and clustered 

organization of the pattern probabilities 

Pump current (mA) 
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Pump current (mA) 

P-

1/6 
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In another experiment: the same 

transition, hierarchy and clusters  

75,000 – 880,000 spikes 

(different laser, new oscilloscope) 
29 C. Masoller 

     

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014) 



LK model in good agreement 

with observations 
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 Low feedback  Stronger feedback 

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014) 



The transition is not detected by 

traditional autocorrelation analysis 
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First and second order correlation coefficient of 

the empirical ISI sequence 
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Logistic map Tent map 

Can we find a minimal model that 

displays these features?  
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A modified circle map: 

minimal phenomenological model 

 )4sin()2sin(
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1 iiii
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=0.23 

K=0.04 

Neiman and Russell, Models of stochastic biperiodic oscillations and extended serial 

correlations in electroreceptors of paddlefish, PRE 71, 061915 (2005) 
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Good minimal model only for ISI 

correlations; not for ISI distribution 
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Response to periodic modulation 
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Laser intensity: 

Increasing 

modulation 

amplitude 

=660 nm 

=1550 nm 

Two experiments: 

Relevant for understanding neuronal encoding of external stimuli  

Tendency 

to lock  



Similar observations @ 1550 nm 

Interpretation: locking to external forcing 
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Experiments - minimal model 

comparison 

Experiments @ 660 nm 

 (68,000 - 200,000 dropouts) 
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Experiments – LK model comparison 

Modulation frequency (1-50 MHz)  

Experiments LK model 



Weak modulation: influence of 

the modulation frequency 

40 T. Sorrentino et al, Opt. Express 23, 5571 (2015) 

Experiments LK model 



Influence of the delay time 

(controls the natural spike rate) 

14/05/2015 C. Masoller 41 

Experiments LK model 

T. Sorrentino et al to appear in IEEE JSTQE (2015) 



A valuable tool for identifying 

noisy n:m locking 
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Probability of “10” 

from empirical data. 
 

Pump current: 

modifies the 

natural 

(unmodulated) 

spike rate 



Uncovering longer correlations 
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Probability of “210” 

Probability of “10” 

Probability of “3210” 

Weak modulation Stronger modulation 
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 New method proposed to identify signatures of determinism 

in the apparently random sequence of spikes of a laser with 

time-delayed feedback. 

 The method allows to classify the optical spikes in two 

categories. 

 New symbolic states found, with a clear hierarchical and 

clustered organization. 

 Very good agreement with time-delayed LK model. 

 Minimal model identified. Robust under external forcing. 

 Present work: towards trying to understand why the modified 

circle map is a good minimal model. 

Conclusions 



 Stochastic time-delayed systems are complex and high-
dimensional. 

 

 Event-level description + ordinal analysis: powerful method 
to analyze their output signals. 

 

─  useful for understanding data, uncovering patterns,  

 

─ for model comparison, parameter estimation,  

 

─ for classifying events, 

 

─ for forecasting events. 
 

Take home message 
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Thanks 

Thank you for your attention!  
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