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 Univariate time-series analysis 

 Ordinal analysis 

 Information theory measures 

 Bivariate time-series analysis 

 Applications 

Outline 
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 Many methods have been developed to test for determinism, 

nonlinearity and correlations in data generated from complex 

systems (biomedical, geoscience, socio-economical, etc). 

 The appropriateness of the method depends on the data 

− short or long;  

− stationary or not;  

− more or less noisy;  

− multi or single channel measurements,  

− discrete or continuous values,  

− etc. 

 Different methods provide complementary information. 

 

 

Nonlinear time-series analysis 
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 First step: Look at the data. Examine simple properties: 

auto correlation, Fourier spectrum, return map (xi vs x i+), 

histogram, etc. 

Visual inspection 
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Optical spikes Neuronal spikes 

Similar type of processes generate these output signals? 



 Threshold crossings 

Event-like description of a signal 
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 Extreme values 

 Bin counting 

… and many others. 

Time intervals between events can be statistically independent 

(renewal) or not statistically independent (non-renewal process). 

Positive slope crossing in a fixed α level 



A. Longtin et al, PRL 67 (1991) 656 

Optical ISI distribution, data 

collected in our lab 

 

Neuron inter-spike interval (ISI) 

distribution 

when a sinusoidal signal is 

applied to the laser current 

Histogram analysis of response to 

periodic stimulation 
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A. Longtin IJBC 3 (1993) 651 

Optical ISIs Neuronal ISIs 

A. Aragoneses et al, Opt. Exp. (2014)  

Return maps: Ti vs. Ti+1 

when a sinusoidal signal is 

applied to the laser current 



Inter-spike-intervals  

serial correlation coefficients 
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HOW TO INDENTIFY TEMPORAL STRUCTURES? 

RECURRENT / INFREQUENT PATTERNS? 

iii ttI  1



Several approaches to identify patterns and temporal 

ordering in the sequence 

 

 Phase-space reconstruction methods 

- Time-delay coordinates 

- Derivative coordinates 

 Symbolic methods 

 Mapping the time series into a network 

 

They allow for model verification, forecasting, classification 

of different types of behaviors, noise reduction, etc. 

 

Next step: detect hidden structures  
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Reconstruction using delay 

coordinates 
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A problem: finding good embedding (lag , dimension d) 

Bradley and Kantz, CHAOS 25, 097610 (2015) 



Read more 
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CHAOS VOLUME 9, 1999 



 The time series {x1, x2, x3, …} is transformed (using an appropriated rule) 

into a sequence of symbols {s1, s2, …}  

 

 taken from an “alphabet” of possible symbols {a1, a2, …}.  

 

 Then consider “blocks” of D symbols (“patterns” or “words”). 

 

 All the possible words form the “dictionary”. 

 

 Then analyze the “language” of the sequence of words 

- the probabilities of the words, 

- missing/forbidden words,  

- transition probabilities,  

- information measures (entropy, mutual information, etc). 

Symbolic analysis 
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 if xi > xth   si = 0; else si =1 

 transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…} 

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3: 

 {011   100    001    011   111 …} 

 The number of words (patterns) grows as 2D 

 More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example:  

 if xi > xth1   si = 0;  

 else if xi < xth2  si =2;  

 else (xth2 <x i < xth1)  si =1.  

Threshold transformation 

(phase space partition) 
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 Ordinal transformation: 

 

 if xi > xi-1   si = 0; else si =1  

 

 also transforms a time-series into a sequence of 0s and 1s 

without using a threshold 

 “words” of D letters are formed by considering the order 

relation between sets of D values {…xi, xi+1, xi+2, …}.  

 

 

 The number of patterns grows as D! 

Alternative symbolic rule 
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Example: the logistic map 
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 x(i+1)=r x(i)[1-x(i)]                
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Histogram r=4  Rule:  

if  (xi < xi+1)   si = 1 ;  

        else si =2 



Logistic map: symbolic dynamics 

characterized with D=3 words 
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 forbidden 

Take home message: ordinal analysis can yield information about 

more expressed (and/or missing) patterns in the data. 



 Proposed in 2002 (Bandt and Pompe PRL 88, 174102). 

 

 It has been successfully applied to the analysis of signals 

- Financial 

- Biological, life sciences 

- Geosciences, climate 

- Physics, chemistry, etc 

 

 Used to: 

- Distinguish stochasticity and determinism  

- Classify different types of dynamical behaviors (pathological, healthy) 

- Quantify complexity 

- Identify coupling and directionality, etc. 

Ordinal analysis 
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 D=3: correlations among 3 inter-spike-intervals (ISIs). 

210 

 The number of patterns 

grows as D! 

012 

 How to quantify the information? 

‒ Permutation entropy (more 

latter) 

 How to select optimal D?  

    depends on: 

─ The length of the data. 

─ The length of the correlations 

 iip pps log



Read more 
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Recent Progress in Symbolic Dynamics and Permutation Complexity Ten 

Years of Permutation Entropy  

The European Physical Journal Special Topics 

Volume 222 / No 2 (June 2013)  

Special Issue 



Threshold transformation:  

if xi > xth   si = 0; else si =1 

 Advantage: keeps information 

about the magnitude of the 

values. 

 Drawback: how to select an 

adequate threshold (“partition” 

of the phase space). 

 2D 

 

Ordinal transformation:  

if xi > xi-1   si = 0; else si =1 

 Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values 

 Drawback: no information 

about the actual data values 

 D! 
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comparison 
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 Example: climatological data (assuming monthly sampled data) 

− Consecutive months: 

− One year: 

− Consecutive years: 

− etc 

Constructing longer words 

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

 Solution: a lag allows considering long time-scales without 

having to use words of many letters 
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)...]5( ),4(),3(),2(),1( ),( [...  txtxtxtxtxtx

),...]4(),2(),( [...  txtxtx

 But long time series will be required to estimate the probabilities 

of the fast growing number of words in the dictionary (D!).  

)...]8( ),...4( ),...([...  txtxtx iii
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a: One minute of data without artefacts.  

b: Mean absolute flow for each 30 seconds of 24 hours measurement. 

c: persistence as a function of lag d, shows structure, needs no calibration. 

C. Bandt, arXiv:1411.3904v2 

Nose breathing of a healthy 

volunteer in normal life  



 Assuming that we have a suitable symbolic 

description of the time series. 

 

 What information can we obtain from the 

sequence of “words”? 

 

 How much information is in a time-series? 

 

 Analogy with deciphering a foreign text. 

Next? 

06/05/2017 23 



 The time-series is described by a set of probabilities 

 

 Shannon entropy: 

 

 Interpretation: “quantity of surprise one should feel upon 

reading the result of a measurement”  
 K. Hlavackova-Schindler et al, Physics Reports 441 (2007) 

 Simple example: a random variable takes values 0 or 1 with 

probabilities: p(0) = p, p(1) = 1 − p. 

 H = −p log2(p) − (1 − p) log2(1 − p). 

     p=0.5: Maximum unpredictability. 

Information theory measure: 

Shannon entropy 


i

ii ppH 2log

1
1




N

i

ip
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probabilities: Permutation Entropy 



Permutation entropy and 

Lyapunov exponent 

Bandt and Pompe  

Phys. Rev. Lett.  2002 
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Entropy per symbol: 

 x(i+1)=r x(i)[1-x(i)]  

Robust to noise 

Entropy:  measures unpredictability or disorder.  

Complexity? 



H = 0 

C = 0 

H ≠ 0  

C ≠ 0 

H = 1 

C = 0  

Order Disorder Chaos 

We would like to find a quantity “C” that measures complexity, 

as the entropy, “H”, measures unpredictability, and, for low-

dimensional systems, the Lyapunov exponent measures chaos. 



Feldman, McTague and Crutchfield, Chaos 2008 

A useful complexity measure needs to do more 

than satisfy the boundary conditions of vanishing 

in the high- and low-entropy limits. 

 

Maximum complexity occurs in the region 

between the system’s perfectly ordered  state 

and the perfectly disordered one. 



 Shannon entropy 
 
 
  
 Tsallis entropy 
 
 
 
 Renyi entropy 
 
 
etc 
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Information measures 

 Assuming that we know the probability distribution  

P=[pi, i=1,N] that characterizes a given system, we 

can use one of the following information measures 



max

][
][

I

PI
PH 

 where 

 Pe being the equilibrium probability distribution (that 

maximizes the information measure). 

    Example:  if  I[P] = Shannon entropy 

    

   then  Pe = [pi=1/N for i=1,N] 

    

   and  Imax = ln(N) 

][max ePII 

1][0  PH

Normalized entropy 



Measures the “distance“ from P to the equilibrium 

distribution, Pe 

 

where Qo is a normalization constant such that 

1][0  PQ
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Disequilibrium Q 
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 Euclidean 
 
 
  
 Wootters 
 
 
 
 Kullback relative         
entropy 

 
 

 Jensen divergence 

Distance between P and Pe  

Read more: S-H Cha: Comprehensive Survey on Distance/Similarity Measures 

between Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007) 



A family of complexity measures  

can be defined as: 

 

 

where 

A = S, T, R (Shannon, Tsallis, Renyi) 

B = E, W, K, J (Euclidean, Wootters, Kullback, Jensen) 

 

 

 

 

][][][ PQPHPC BA 

][][][ PQPHPC JSMPR 

][][][ PQPHPC ESLMC  Lopez-Ruiz, Mancini & Calbet, Phys. Lett. A (1995). 
Celia Anteneodo & Plastino, Phys. Lett. A (1996). 

Martín, Plastino & Rosso, Phys. Lett. A (2003). 

Statistical complexity measure C  



Many complexity measures have 

proposed in the literature 
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 Are characterized by a “fractal” dimension that measures 

roughness. 

Fractal objects: each part of the object 

is like the whole object but smaller 

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180 

Romanesco broccoli 

D=2.66 

Human lung 

D=2.97 
Coastline of Ireland 

D=1.22 



 The complexity of an object is a measure of the 

computability resources needed to specify the object. 

Kolmogorov Complexity 

Example: Let’s consider 2 strings of 32 letters: 

abababababababababababababababab  

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7  

 The first string has a short description: “ab 16 times”. 

 The second one has no obvious simple description: 

complex or random?  



The complexity of the Logistic Map 
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 x(i+1)=r x(i)[1-x(i)]  

Lempel & Zip complexity 
Kaspar and Schuster,  

Phys Rev. A 1987 Martín, Plastino, & Rosso, Physica A 2006 

Euclidian 

distance 

Jensen 

distance 



Read more 
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Applications 
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Can be adapted to the analysis 

of 2D images 
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Classifying ECG-signals according 

to the frequency of words  
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(the probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set) 

Perm (i,D,lag) 

Time series of inter-beat intervals x(t) versus interval number t for a typical 

person with congestive heart failure (right) and a healthy subject (left). 



Transition to optical complexity 

10 

01 

Consistent with stochastic 

dynamics at low pump current, 

signatures of determinism at 

higher pump currents. 
06/05/2017 42 

1010, 1001 

0110, 0101 

video 

https://www.youtube.com/watch?v=nltBQG_IIWQ&feature=youtu.be


Mapping a time series into a 

complex network 

 



Networks = Graphs = vertices 

(nodes) + edges (links) 

06/05/2017 44 Strogatz, Nature 2001 

Degree (number of links of a node) distributions: 



The number of patterns 

increases as D! 

Opportunity: turn a time-series into 

a network by using the patterns as 

the “nodes” of the network. 



The network nodes are the “ordinal 

patterns”, and the links? 

Adapted from M. Small (The University of Western Australia) 

• The links are defined in 

terms of the probability of 

pattern “” occurring after 

pattern “”. 

• Weighs of nodes: the 

probabilities of the 

patterns (i pi=1). 

• Weights of links: the 

probabilities of the 

transitions (j wij=1 i).  

Weighted and 

directed network 



Three network-based 

diagnostic tools 

• Entropy computed from the weights of the nodes (permutation 

entropy) 

 

• Entropy computed from weights of the links (transition 

probabilities, ‘01’→ ‘01’, ‘01’→ ‘10’, etc.) 

 

 

 

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc. 

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network) 
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 x(i+1)=r x(i)[1-x(i)]  

C. Masoller et al, NJP 2015 



C. Masoller et al, New J. Phys. 17 (2015) 023068 

Empirical data 

Slightly different optical 

feedback conditions 

result in PS or no PS.  

 

Analysis done with 

D=3, error bars 

computed with 1000 

time series L=500.  



A time-series is represented as a graph, where each data point is a node 

Another way to turn a time-series into a 

network: horizontal visibility graph (HVG) 

HVG method: B. Luque et al, PRE 80, 046103 (2009) 

  Unweighted and undirected graph 

Number of links 

Ordinal pattern 

D=3 

• Rule: data points i and j are connected if there is “visibility” 

between them: Imax,i and Imax,j > Imax,n for all n, i<n<j 

intensity peaks 

above Th = 2 



The obtained graph 

How to characterize this graph?  

Intensity of a fiber laser 
Low -- High pump power 



 Degree distribution for 

various pump powers 

using Th=2. 

HVG analysis 

 Entropy of the degree 

distribution (normalized to the 

entropy of Gaussian white noise) 

 Degree Distribution (distribution of the number of links) 

 sharp transition detected. 

Aragoneses et al, PRL 116, 033902 (2016) 



 Sharp transition also seen 

with ordinal analysis 

Threshold vs not threshold 
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 sharp transition 

not seen. 

Th=0           Th=1           Th=2 

 But with raw data 



Space-time representation 

of a time-series 

all data points, no threshold used 

 Sharp variations at the transition 

not captured. 

Pump power below, at, 

and above the transition. 

index i (time in units of dt) 

 Different 

“spatial “ 

structures 

uncovered 

with different 

lags (sampling 

times). 
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Bi-variate time-series analysis 

 



Two time series X, Y: 

Cross-correlation analysis 

06/05/2017 56 

Detects linear relationships 

Source: wikipedia 



Brain functional network 
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Eguiluz et al, PRL 2005 

Chavez et al, PRE 2008 



 Joint entropy: 

Statistical similarity measure:  

mutual information 
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 If X and Y are independent: H(X,Y) = H(X) + H(Y) 

 Mutual Information:  MI(X,Y) = H(X) + H(Y) – H(X,Y) 

 

 

 It reflects the reduction in uncertainty of one variable by knowing 

the other one. 

 X and Y are independent  MI(X,Y) = 0.  

 

 However, computing probabilities from histograms give MI values 

that fluctuate or are systematically overestimated. 


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Problem with mutual 

information 

06/05/2017 59 R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002). 

The statistical 

significance of 

CC and MI 

values needs 

to carefully 

analyzed. 



Read more 
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Beyond bi-variate analysis 
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 Electroencephalographic index of human consciousness. 

 PCI is calculated by  

‒ perturbing the cortex with transcranial magnetic 

stimulation (TMS) to engage distributed interactions in the 

brain (integration) and  

‒ compressing the spatiotemporal pattern of these 

electrocortical responses to measure their algorithmic 

complexity (information). 

Perturbational complexity index (PCI) 
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Conclusions 



 Take home messages:  

• Symbolic analysis, network representation, spatiotemporal 

representation, etc., are useful tools for investigating 

complex signals. 

• Different techniques provide complementary information. 

What did we learn?   

“…nonlinear time-series analysis has been used to great 

advantage on thousands of real and synthetic data sets 

from a wide variety of systems ranging from roulette wheels 

to lasers to the human heart. Even in cases where the data 

do not meet the mathematical or algorithmic requirements, 

the results of nonlinear time-series analysis can be helpful 

in understanding, characterizing, and predicting dynamical 

systems…” 
Bradley and Kantz, CHAOS 25, 097610 (2015) 
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