Identifying and characterizing regime transitions in complex dynamical systems

Cristina Masoller

Universitat Politecnica de Catalunya, Physics Department Terrassa, Barcelona, Spain

Cristina.masoller@upc.edu

www.fisica.edu.uy/~cris

Campus d'Excel·lència Internacional

Medyfinol 2016 Valdivia, Chile

Dangerous regime transitions

Campus d'Excel·lència Internacional

Electroencephalographs - EEGs

www.epilepsysociety.org.uk

Collapse of Atlantic Meridional Overturning Circulation Nat. Comm. 2014

Cardiac arrhythmia

Motivation

A lot of work is being devoted to develop reliable diagnostic tools for identifying and characterizing regime transitions

long-term climatic signals reveal a slowfast dynamics.

De Saedeleer, Crucifix and Wieczorek, Clim. Dyn. 2013

Bangladesh, Nature 2014

Dynamical regime transitions in optical systems

Campus d'Excel·lència Internacional

Polarization switching

Semiconductor laser output as the pump current increases

Raman fiber laser output as the pump power increases

Time

How optical chaos emerges from noise: transition to coherence collapse

Semiconductor laser output as the pump current increases

- Data analysis tools based on <u>symbolic analysis</u> and <u>network representation of time-series</u> provide new insight into these phenomena.
- Optical data can be useful for testing novel analysis tools.

- Tools to analyze the data
- Early-warning signs of upcoming abrupt switching
- Laminar-turbulence transition
- Optical noise chaos transition
- Summary

The OP probabilities allow identifying <u>more</u> <u>expressed and/or infrequent patterns</u> in the <u>order</u> of the sequence of data values.

Random data?

- Advantage: the probabilities uncover temporal correlations.
- Drawback: we lose information about the actual values.
 - ⇒ Ordinal analysis provides complementary information to that gained with other analysis tools.

Read more: M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, Entropy 14, 1553 (2012)

The number of patterns increases as D!

Opportunity: turn a time-series into a network by using the patterns as the "nodes" of the network.

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

The network nodes are the "ordinal patterns", and the links?

Campus d'Excel·lència Internacional

- The links are defined in terms of the probability of pattern "β" occurring after pattern "α".
- Weighs of nodes: the probabilities of the patterns (∑_i p_i=1).
- <u>Weights of links</u>: the probabilities of the transitions (∑_j w_{ij}=1 ∀i).

⇒ Weighted and directed network

Adapted from M. Small (The University of Western Australia)

- Entropy computed from the weights of the nodes (permutation entropy) $s_p = -\sum p_i \log p_i$
- Entropy computed from weights of the links (transition probabilities, '01' \rightarrow '01', '01' \rightarrow '10', etc.)

$$w_{ij} = \frac{\sum_{t=1}^{L-1} n \left[s(t) = i, s(t+1) = j \right]}{\sum_{t=1}^{L-1} n \left[s(t) = i \right]}$$

• Asymmetry coefficient: normalized difference of transition probabilities, $P('01' \rightarrow '10') - P('10' \rightarrow '01')$, etc.

$$a_{c} = \frac{\sum_{i} \sum_{j \neq i} \left| w_{ij} - w_{ji} \right|}{\sum_{i} \sum_{j \neq i} \left(w_{ij} + w_{ji} \right)}$$

(0 in a fully symmetric network;1 in a fully directed network)

Identifying early signs of upcoming transition

- "optical big data": useful for testing novel diagnostic tools

Experimental data from INLN & Bangor University (S. Barland & Y. Hong)

VCSEL polarization-resolved intensity: two sets of experiments

•

Time series recorded

Record the turn-off of

with pump current

varying in time.

Campus d'Excel·lència Internacional

- Time series recorded with pump current constant in time.
- Record the <u>turn-on</u> of the orthogonal mode.
 - the fundamental mode. Olarization-resolved intensity (arb. units) 0.01 250 -0.01 200 Power (arb.u.) -0.02 Time 150 -0.03 100 -0.04 50 -0.05 0 200 0 400 600 800 1000 -0.06 Time (0.1ns) -0.07Time 5.6 5.8 6 Bias current (mA)

Is it possible to anticipate the PS?

No if the mechanisms that trigger the PS are fully stochastic.

Results for constant pump current & turn-on of the orthogonal mode

⇒ Despite of the stochasticity of the time-series, the measures "anticipate" the PS.

⇒ Deterministic mechanisms involved.

Error bars computed from 100 non-overlapping windows with L=1000 data points each. Length of the pattern D=3.

C. Masoller et al, New J. Phys. 17, 023068 (2015)

Influence of the length of the pattern (D) and of length of the time-series (L)

Campus d'Excel·lència Internacional

 \Rightarrow Transition detected even for short dataset (L=500 with D=3). Open issues: quantify performance? optimal D depends on L?

C. Masoller et al, New J. Phys. 17 (2015) 023068

Results for time-varying pump current & turn-off of the fundamental mode Campus d'Excel·lència Internacional

Slightly different optical feedback conditions result in PS or no PS.

Analysis done with D=3, error bars computed with 1000 time series L=500.

Another open issue: comparison with other diagnostic tools C. Masoller et al, New J. Phys. 17 (2015) 023068

Characterizing the laminar-turbulence transition in a fiber laser

Experimental data from Aston University, UK (Prof. Turitsyn' group)

Analysis of the intensity peaks higher than a threshold

Campus d'Excel·lència Internacional

Each time series is first normalized to $\langle I \rangle = 0$ and $\sigma = 1$

In each time series $5x10^7$ data points. Sampling time dt = 12.5 ps Th = 2: number of peaks >10⁴ for all values of the pump power

- Sharp transition <u>not captured</u> by standard histogram analysis.
- Different entropy behavior.

A. Aragoneses, L. Carpi, N. Tarasov, D. V. Churkin, M. C. Torrent, C. Masoller and S. K. Turitsyn, PRL 116, 033902 (2016)

Second diagnostic tool: horizontal visibility graph (HVG)

Campus d'Excel·lència Internacional

A time-series is represented as a graph, where each data point is a node

 <u>Rule</u>: data points *i* and *j* are connected if there is "visibility" between them: I_{max,i} and I_{max,j} > I_{max,n} for all n, i<n<j

\Rightarrow Unweighted and undirected graph

Read more HVG method: B. Luque et al, PRE 80, 046103 (2009)

The obtained graph

Campus d'Excel·lència Internacional

How to characterize this graph?

 \Rightarrow Degree Distribution (distribution of the number of links)

 Degree distribution for various pump powers using Th=2.

 \Rightarrow sharp transition also seen with HVG technique.

Aragoneses et al, PRL 116, 033902 (2016)

Aragoneses et al, PRL 116, 033902 (2016)

Ordinal analysis of lagged raw data

How optical chaos emerges from noise?

Noise-LFFs-CC transition

Campus d'Excel·lència Internacional

Experimental data recorded in our lab (zero mean, normalized to $\sigma=1$)

D. Lenstra, B. Verbeek and A. Den Boef, IEEE J. Quantum Electron. 21, 674 (1985)

- Can we quantitatively identify the onset of LFFs and CC regimes?
- Can we quantify their different properties?

Intensity PDF depends on the oscilloscope sampling time

Identifying regime transition points

Campus d'Excel·lència Internacional

C. Quintero-Quiroz et al, Sci. Rep. 6 37510 (2016)

Number of thresholdcrossing events

Ordinal probabilities

Conclusions

- Take home message:
 - Ordinal time series analysis and the complex network approach are useful tools for characterizing transitions.
- Main conclusions
 - Early-warning signs of upcoming PS validated.
 - Laminar-turbulent transition: sharp transition seen in thresholded data but not in the raw data; particular timescales identified at the transition.
 - Transition to optical chaos: low frequency fluctuations (LFFs) and the coherence collapse (CC) can be quantitatively distinguished.

Collaborators

At UPC

- Carlos Quinteros
- Andres Aragoneses
- Laura Carpi
- Toni Pons
- Mari Carme Torrent
- At URV (Tarragona)
 - Alex Arenas, Sergio Gomez
- Experimental data:
 - PS data from INLN (S. Barland) and Bangor University (Y. Hong)
 - Fiber laser data from Aston University (S. Turitsyn)

<cristina.masoller@upc.edu>

Papers at http://www.fisica.edu.uy/~cris/

- C. Masoller et al, "Quantifying sudden changes in dynamical systems using symbolic networks", NJP 17, 023068 (2015).
- A. Aragoneses et al, "Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser", PRL 116, 033902 (2016).
- C. Quintero-Quiroz et al, "Quantitative identification of dynamical transitions in a semiconductor laser with optical feedback", Sci. Rep. 6, 37510 (2016).

