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 In the spike rate?  

 In the relative timing of the spikes? 

 Single neuron encoding or ensemble encoding? 

 If there are temporal correlations, how can they be detected 

and quantified? 

 Our goal: try to understand how a neuron encodes a weak 

(subthreshold) periodic input in the output sequence of spikes. 

How neurons encode 

information? 



Inter-spike-intervals (ISIs) 
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inter-spike-intervals 

A. Longtin et al, PRL 67 (1991) 656 

Empirical ISI distribution 



Serial 

correlations 
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Membrane 

potential from a 

pyramidal cell of 

weakly electric fish 

Nonrenewal 

spike train 

statistics: 

negative 

correlation 

at lag 1 

• Short ISIs tend to be followed by long ones and vice versa.  

• Correlations at longer lags vanish. 
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HOW TO INDENTIFY TEMPORAL STRUCTURES?  

RECURRENT / INFREQUENT PATTERNS? 

However, SCCs detects linear relationships only 

Source: wikipedia 
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 Analysis 

method 

 

 

 Single 

neuron 

 

 

 Two coupled 

neurons 

Outline 
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Symbolic method of time-

series analysis 



021 012 

Symbolic method of time-

series analysis 

   relative order of three intervals {…Ii, Ii+1, Ii+2, …}  

Example: (5, 1, 7) gives “102” because 1 < 5 < 7 

Brandt & Pompe, PRL 88, 174102 (2002) 

Ordinal 

probabilities 

1 2 3 4 5 6 



Analysis of single-neuron ISI 

sequences simulated with FHN 

model 

 
- more/less frequent patterns encode information 

about subthreshold signal? 



FHN model 

Gaussian white noise and 

subthreshold signal: a0 and T such 

that spikes are noise-induced. 

 

Time series with 100,000 ISIs 

simulated. Significance analysis with 

surrogates, 3 confidence level. 

T=20 

D=0.015 

J. M. Aparicio-Reinoso, M. C. Torrent and C. Masoller,  PRE 94, 032218 (2016). 

a=1.05, =0.01 



Role of the noise strength 

a0=0 

a0=0.02 

T=10 

a0=0.02 

T=20 

• No signal  no temporal ordering. 

• Subthreshold periodic input induces preferred and infrequent 

patterns. 

• They depend on the period and on the noise strength. 

• Resonant-like behavior. 

J. M. Aparicio-Reinoso M. C. Torrent and C. Masoller, PRE 94, 032218 (2016). 

Without signal With signal 
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Time series with different P(012) 

P(012)>1/6 

P(012)<1/6 

Low noise 

Stronger noise 

~ 40 spikes in 20 T 



Role of the modulation amplitude 

D=0.035 D=0.015 

• The amplitude of the (weak) modulation does not modify the 

preferred or the infrequent patterns. 

• Probabilities encode information about the amplitude of the 

signal. 

J. M. Aparicio-Reinoso, M. C. Torrent and C. Masoller, PRE 94, 032218 (2016). 

a0=0.02 

T=20 



Role of the modulation period 

a0=0.02 

D=0.015 
a0=0.02 

D=0.035 

Which is the underlying mechanism? A change of the spike rate? 

  No direct 

    relation. 

• More probable patterns depend on period and noise strength. 



Role of the size of the pattern 

and of the length of dataset 

15 

With signal 

Without signal 



 Periodic signal: amplitude and period might be 

encoded in more and less expressed patterns. 

 Single-neuron encoding: very slow because 

long spike sequences are needed to estimate 

the probabilities. 

 Ensemble encoding: very fast because few 

spikes are enough to compute the probabilities. 

So… how neurons might encode characteristic 

features of an external stimulus? 
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How many features can be 

encoded? 
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D=4 

4!= 24 

D=5:  
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Coupling to a second neuron 

 
- can it improve the encoding of the subthreshold 

periodic signal? 



 Identical neurons. 

 Linear & instantaneous & asymmetric mutual coupling  

 Coupling and noise both in the fast variable. 

 a=1.05 and =0.01; parameters: a0, T, D, 1, 2 

Model 
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We analyze the output of neuron 1 
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Identification of the 

subthreshold region 

21 

Without noise: 

signal is 

subthreshold if 

a0 small and/or 

T long  

With noise: 

coupling  

increases the 

spike rate 

Spike rate 

a0  

T T  

a0  



Role of coupling coefficients 

22 

With noise:  

In the region of noise-

induced spikes, 

The subthreshold 

signal increases the 

spike rate. 

  

If 1=0, the spike rate 

of neuron 1 does not 

depend of neuron 2 

Without noise: 

large enough || 

induces spikes. 

a0=0  a0=0.05, T=10  

Spike rate 

2  

2  

1  1  



Noise dominated regime 
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1= 2 =0  1= 2 =0.05  

The neuron fires at a lower noise level   less noise is 

needed to encode the external signal. 



Relation between the period and 

the mean ISI 
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 Three  regimes, robust to coupling 

1= 2 =0  1= 2 =0.05  

Weak noise 

Intermediate  

noise 

Strong noise 



Double resonance 
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Noise strength 

ISI
R






Subthreshold signal induces 

temporal correlations 
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1= 2 =0  1= 2 =0.05  

a0=0  

a0=0.05 

T=10  

 Similar 

effect of 

increasing 

noise or 

coupling 



Coupling vs noise 
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For weak noise, coupling plays a role similar to noise 

 

For strong noise, coupling plays no role 



Influence of coupling in the 

ordinal probabilities 
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With coupling the period of the subthreshold signal is 

still encoded in the ordinal probabilities 

Coupling changes the preferred & infrequent patterns 



Comparing ordinal probabilities and 

serial correlation coefficients 
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For strong noise, correlation coefficients at lag 1 and 2 vanish 

but ordinal analysis detects more / less expressed patterns. 

a0 =  =0.05, T=8  

      



Relation of P(210) and serial 

correlation coefficients 

30 

Varying a0 and T while keeping  and D constant 

Varying s and D while keeping a0 and T constant 

Varying T and D while keeping a0 and  constant 

Ordinal analysis and linear SCCs provide complementary 

information: spike sequences with similar probabilities can be 

distinguished by different SCCs and vice-versa 



Time series with negative SCC1 

and low probability of 210 
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• Short ISIs tend to be 

followed by long ones 

and vice versa.  

Synthetic 
Empirical (weak 

electric fish) 



Relation between mean ISI and P(012) 
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 P(012) minimum when ISIT/2 (two spikes each period) 

Noise increases 
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 SCC1=SCC2=0, and the mean ISI is the same for the 

different periods, but the ordinal probabilities are different. 



Conclusions 



 Take home message:  

• Ordinal analysis is useful for uncovering patterns in data 

• It detects nonlinear temporal correlations which might not 

be captured by linear analysis. 

 

 Main conclusions: 

• Neuron fires at lower noise level when coupled. 

• For weak noise, coupling and noise have similar effects. 

• Coupling changes the preferred/infrequent patterns. 

 

 Future work:  

• Neuronal ensemble. 

• Is it possible to optimize signal transmission to neuron 2? 

• Compare with empirical data. 

What did we learn?   
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