Subthreshold signal encoding in coupled FitzHugh-Nagumo neurons

Maria Masoliver and Cristina Masoller

Universitat Politecnica de Catalunya Cristina.masoller@upc.edu

www.fisica.edu.uy/~cris

Campus d'Excel·lència Internacional

Workshop on Nonlinear Dynamics and Complexity Volga, July 2017

How neurons encode information?

- In the spike rate?
- In the relative timing of the spikes?
- Single neuron encoding or ensemble encoding?
- If there are temporal correlations, how can they be detected and quantified?
- Our goal: try to understand how a neuron encodes a weak (subthreshold) periodic input in the output sequence of spikes.

FIG. 1. (a) An experimental ISIH obtained from a single auditory nerve fiber of a squirrel monkey with a sinusoidal 80dB sound-pressure-level stimulus of period $T_0 = 1.66$ ms applied at the ear. Note the modes at integer multiples of T_0 . Inset:

A. Longtin et al, PRL 67 (1991) 656

- Short ISIs tend to be followed by long ones and vice versa.
- Correlations at longer lags vanish.

29/07/2017

Exp Brain Res (2011) 210:353–371 ⁴

 $SCC_{1} = \frac{\langle (I_{i} - \langle I \rangle)(I_{i-1} - \langle I \rangle) \rangle}{\sigma^{2}}$

However, SCCs detects *linear* relationships only

HOW TO INDENTIFY TEMPORAL STRUCTURES? RECURRENT / INFREQUENT PATTERNS?

Symbolic method of timeseries analysis

Symbolic method of timeseries analysis

Brandt & Pompe, PRL 88, 174102 (2002)

Analysis of single-neuron ISI sequences simulated with FHN model

- more/less frequent patterns encode information about subthreshold signal?

$$\epsilon \frac{dx}{dt} = x - \frac{x^3}{3} - y,$$

$$\frac{dy}{dt} = x + a + a_o \cos(2\pi t/T) + D\xi(t),$$

FHN model

a=1.05, ε=0.01

Gaussian white noise and <u>subthreshold</u> signal: **a**₀ and **T** such that spikes are **noise-induced**.

Time series with 100,000 ISIs simulated. Significance analysis with surrogates, 3σ confidence level.

J. M. Aparicio-Reinoso, M. C. Torrent and C. Masoller, PRE 94, 032218 (2016).

Role of the noise strength

- No signal \Rightarrow no temporal ordering.
- Subthreshold periodic input induces preferred and infrequent patterns.
- They depend on the period and on the noise strength.
- Resonant-like behavior.

Time series with different P(012)

Role of the modulation amplitude

- The amplitude of the (weak) modulation does not modify the preferred or the infrequent patterns.
- Probabilities encode information about the amplitude of the signal.

Role of the modulation period

Campus d'Excel·lència Internacional

• More probable patterns depend on period and noise strength. Which is the underlying mechanism? A change of the spike rate?

Role of the size of the pattern and of the length of dataset

UNIVERSITAT POLITINGA DE CATALUNYA BARCELONATECH Solution Campus d'Excel·lència Internacional Inversitat Polition Politica Politi

- Periodic signal: amplitude and period might be encoded in more and less expressed patterns.
- <u>Single-neuron encoding</u>: very **slow** because long spike sequences are needed to estimate the probabilities.
- <u>Ensemble encoding</u>: very **fast** because few spikes are enough to compute the probabilities.

How many features can be encoded?

29/07/2017

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Coupling to a second neuron

- can it improve the encoding of the subthreshold periodic signal?

Model

$$\begin{aligned} \epsilon \dot{u_1} &= u_1 - \frac{u_1^3}{3} - v_1 + \overline{a_0 \cos(2\pi t/T)} + \overline{\sigma_1 u_2} + \sqrt{2D} \xi_1(t) \\ \dot{v_1} &= u_1 + a, \\ \epsilon \dot{u_2} &= u_2 - \frac{u_2^3}{3} - v_2 + \overline{\sigma_2 u_1} + \sqrt{2D} \xi_2(t) \\ \dot{v_2} &= u_2 + a \end{aligned}$$

- Identical neurons.
- Linear & instantaneous & asymmetric mutual coupling
- Coupling and noise both in the fast variable.
- a=1.05 and ε =0.01; parameters: a₀, T, D, σ_1 , σ_2

We analyze the output of neuron 1

Campus d'Excel·lència Internacional

20

Identification of the subthreshold region

Campus d'Excel·lència Internacional

Without noise: signal is subthreshold if a₀ small and/or T long

> With noise: coupling increases the spike rate

Role of coupling coefficients

Campus d'Excel·lència Internacional

Without noise: large enough |σ| induces spikes.

With noise:

In the region of noiseinduced spikes, The subthreshold signal increases the spike rate.

If σ_1 =0, the spike rate of neuron 1 does not depend of neuron 2

Noise dominated regime

Campus d'Excel·lència Internacional

The neuron fires at a lower noise level \Rightarrow less noise is needed to encode the external signal.

Relation between the period and the mean ISI

 \Rightarrow Three regimes, robust to coupling

Masoller

Double resonance

Subthreshold signal induces temporal correlations

Coupling vs noise

Campus d'Excel·lència Internacional

 \Rightarrow For weak noise, coupling plays a role similar to noise

 \Rightarrow For strong noise, coupling plays no role

Influence of coupling in the ordinal probabilities

Parameters: $D = 2 \cdot 10^{-6}$ and $a_0 = 0.05$

 ⇒ With coupling the period of the subthreshold signal is still encoded in the ordinal probabilities
 ⇒ Coupling changes the preferred & infrequent patterns

Comparing ordinal probabilities and serial correlation coefficients

 \Rightarrow For strong noise, correlation coefficients at lag 1 and 2 vanish but ordinal analysis detects more / less expressed patterns.

Relation of P(210) and serial correlation coefficients

Campus d'Excel·lència Internacional

Varying a_0 and T while keeping σ and D constant Varying s and D while keeping a_0 and T constant Varying T and D while keeping a_0 and σ constant

Ordinal analysis and linear SCCs provide complementary information: spike sequences with similar probabilities can be distinguished by different SCCs and vice-versa

Time series with negative SCC1 and low probability of 210

Relation between mean ISI and P(012)

Campus d'Excel·lència Internacional

P(012) minimum when $(ISI) \approx T/2$ (two spikes each period)

SCC1=SCC2=0, and the mean ISI is the same for the different periods, but the ordinal probabilities are different.

Conclusions

- Take home message:
 - Ordinal analysis is useful for uncovering patterns in data
 - It detects nonlinear temporal correlations which might not be captured by linear analysis.
- Main conclusions:
 - Neuron fires at lower noise level when coupled.
 - For weak noise, coupling and noise have similar effects.
 - Coupling changes the preferred/infrequent patterns.
- Future work:
 - Neuronal ensemble.
 - Is it possible to optimize signal transmission to neuron 2?
 - Compare with empirical data.

THANK YOU FOR YOUR ATTENTION !

<cristina.masoller@upc.edu>

http://www.fisica.edu.uy/~cris/

Emergence of spike correlations in periodically forced excitable systems J. A. Reinoso, M. C. Torrent and C. Masoller, PRE 94, 032218 (2016). Subthreshold signal encoding in coupled FitzHugh-Nagumo neurons M. Masoliver and C. Masoller, in preparation (2017).

