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Inferring the connectivity of a complex system from data. 

First example: brain functional network

Eguiluz et al, PRL 2005
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Henk Dijkstra (Universidad de Ultrech)

Second example: climate networks



The climate system as a complex network
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Complex network representation of the climate system

Donges et al, Chaos 2015

Back to the climate 

system: interpretation 

(currents, winds, etc.)

Nodes

Time series in 

each node

(e.g. air 

temperature)
Sim. measure 

+ threshold



Problems with thresholding
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 The number of connected components as a function of 

threshold reveals different  structures.

 But thresholding near the dotted lines indicates (inaccurately) 

that networks 1 and 2 have similar structures.

Giusti et al., J Comput Neurosci (2016) 41:1–14

Network 1

Network 2



How to “infer” significant 

interactions from observed data?

How to “reconstruct” the 

network?



 How to select the threshold?

 In “spatially embedded networks”, nearby nodes have the 

strongest links.

 How to keep weak-but-significant links?

 There are many statistical similarity measures to infer 

interactions from observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

A classification problem
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Sij > Th  Aij = 1, else Aij=0



Lagged |cross correlation|: 

Observed time series in nodes i and j: ai (t),  aj (t),  t=1, …,T

(normalized =0, =1)

Goal: use a system with known connectivity to test the 

performance of statistical similarity measures

Statistical Similarity Measure:

Sij = max | ij () |

= | ij (ij) | ij in [0,max]
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We compare with the Mutual Information, computed from 

probabilities of “raw” values and from ordinal probabilities 



 Consider a time series x(t)={…xi, xi+1, xi+2, …}
 Which are the possible order relations among three data 

points? 

Ordinal analysis: a  method to find patterns in data 

Bandt and Pompe PRL 88, 174102 (2002)

 Calculate ordinal probabilities by counting how many times 

each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI value significant?  Analysis of surrogate data

The Mutual Information: a nonlinear correlation measure

12



Dynamical system: 

Kuramoto phase oscillators



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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Kuramoto model

(Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the coupling strength increases

Strogatz, Nature 2001

Inferring the links is not 

possible if the oscillators 

are synchronized



Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.

G. Tirabassi et al., “Inferring the connectivity of coupled oscillators from time-series 

statistical similarity analysis”, Sci. Rep. 5 10829 (2015).



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform 

was used to obtain 

phases from 

experimental data

for each coupling strength
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Results obtained with experimental data
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Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



12 electronic chaotic circuits

How the similarity values and lag times depend on the 

coupling strength?
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N. Rubido and C. Masoller, “Impact of lag information on network

inference”, Eur. Phys. J. Special Topics 227, 1243-1250 (2018).



Can we use lag-time information to infer the links?

Three possible rules:

The link i  j exists if

• SIM : only the first criterion holds (Sij > TH )

• AND: both criteria hold (Sij > TH and ij < TH )

• OR: at least one criteria holds (Sij > TH or ij < TH )

If Sij > TH the link i  j exists, otherwise, it does not exist

If ij < TH the link i  j exists, otherwise, it does not exist



To quantify how good these rules are we use the area

under the receiver operating characteristic (ROC) curve

SIM

AND

OR

Low threshold

High threshold



Uncoupled oscillators Coupled oscillators
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Results
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50 Kuramoto phase oscillators, 10% existing links,            

Similarity ij = max cross-correlation of cos(i), cos(j)

Coupling strength

Coupling strength

Order parameter

All

Exist

No exist

SIM AND OR
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Variation of similarity and ij values with the coupling
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Explosive transition to synchrony

Oscillators can be linked only if they have different frequencies:

I. Leyva et al. Explosive transitions to synchronization in networked phase 

oscillators. Scientific Reports 3 (2013) 1281

Coupling strength

Order parameter

Coupling strength Coupling strength



Results 

Coupling strength

SIM 

AND 

OR

All

Exist

No exist



Results obtained using the Phase Locking Value 

as a measure of the similarity of two oscillators 

Coupling strength

SIM AND OR

All

Exist

No exist
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28 electronic chaotic circuits, randomly connected

Results obtained from experimental data
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Data from: R. Sevilla-Escoboza & J. M. Buldu, Synchronization of networks of chaotic 

oscillators: Structural and dynamical data sets. Data in Brief 7 (2016) 1185–1189



 If we know the system’s connectivity, lag information 

seems to be useful for anticipating the transition to 

synchronization (explosive or not).

 If we don’t know the system’s connectivity, lag 

information is not useful for inferring the links (but it 

could be useful to reduce certain types of mistakes –

the false positives or the false negatives). 

Summary
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THANK YOU FOR YOUR ATTENTION !


