

Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation

Cristina Masoller Cristina.masoller@upc.edu www.fisica.edu.uy/~cris

Campus d'Excel·lència Internacional

Workshop on Abnormal Wave Events (W-AWE 2014) Nice, France, June 2014

Sandro Perrone (ex PhD student at UPC, now at the University of Leicester, UK)

Jordi Zamora Munt (IFISC, Mallorca, Spain)

Ramon Vilaseca (UPC)

We are at Campus Terrassa

UPC in Catalunya 1. Barcelona 2. Castelldefels 3. Igualada 4. Manresa 5. Mataró 6. Sant Cugat del Vallès 7. Terrassa 8. Vilanova i la Geltri

Where are we?

Viernes, 25 de septiembre de 2009 Diari de Terrassa

Research building (Gaia) New students' residence (Hipatia)

El edificio Gaia centraliza grupos científicos consolidados y emergentes.

Dynamics, Nonlinear Optics and Lasers research group

Campus d'Excel·lència Internacional

www.donll.upc.edu

Semiconductor laser lab

Campus d'Excel·lència Internacional

- Time-series analysis of low-frequency fluctuations
- Statistical features similar to neuronal spikes

- Introduction (optical rogue waves, semiconductor lasers).
- Semiconductor laser with optical injection: experimental observations & numerical results.
- Influence of current modulation (numerical results).
- Summary and conclusions.

Rogue waves

RWs are rare, ultra-high waves that fall outside (and far from) the main part of long-tailed probability distributions.

The Great Wave of Kanagawa, Katsushika Hokusai. Source: Wikipedia

Optical RWs: first observation

Campus d'Excel·lència Internacional

D. R. Solli et al, Nature 450, 1054, 2007

Since 2007: a lot of work

Citation Report Topic=(optical rogue wave)

Timespan=All years. Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH.

This report reflects citations to source items indexed within Web of Science. Perform a Cited Reference Search to include cita indexed within Web of Science.

Why semiconductor lasers? (diode lasers)

Campus d'Excel·lència Internacional

- Used in
 - Telecommunications
 - Data storage (CDs, DVDs, Blu rays)
 - Barcode scanners, printers, mouse
 - Material processing
 - Biomedical applications (imaging, sensing, etc)

SLs provide an inexpensive setup for the study of ORWs

Optically injected diode lasers

Campus d'Excel·lència Internacional

Regular Article

Labyrinth bifurcations in optically injected diode lasers

V. Kovanis¹, A. Gavrielides², and J.A.C. Gallas^{3,4,5,a}

¹ Air Force Research Laboratory, 2241 Avionics Circle, Wright-Patterson AFB, Dayton OH 45433, USA

² USAF, Research Laboratory, High Power Solid State Lasers Branch, Kirtland AFB, NM 87117, USA

³ TecEdge, Wright Brothers Institute, 5100 Springfield Street, Dayton OH 45431, USA

⁴ Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Brazil

⁵ Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil

Instabilities in lasers with an injected signal

J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni

178 J. Opt. Soc. Am. B/Vol. 2, No. 1/January 1985

Our work in optically injected semiconductor lasers

Campus d'Excel·lència Internacional

- Experimental and numerical identification of deterministic rogue waves.
 - C. Bonatto et al, Deterministic optical rogue waves, PRL 107, 053901 (2011).

- RWs can be predicted with a certain anticipation time.
- They are generated by an external crisis-like process.
- Noise can either enhance or diminish their probability of occurrence.

J. Zamora-Munt et al, *Rogue waves in optically injected lasers: origin, predictability and suppression,* PRA 87, 035802 (2013).

When I increases:

- \rightarrow Joule heating
- \rightarrow the temperature modifies the cavity refractive index
- \rightarrow decreases the cavity resonance frequency

(f approximately linear)

By varying the slave laser pump current we changed the frequency detuning between the lasers

Time series of the laser intensity

Campus d'Excel·lència Internacional

C. Bonatto M. Feyereisen, S. Barland, M. Giudici, C.Masoller, J. R. Rios Leite and J. R. Tredicce, PRL 107, 053901 (2011)

Histograms of pulse amplitude

Campus d'Excel·lència Internacional

Governing equations

Campus d'Excel·lència Internacional

- The <u>complex</u> optical field, **E** (photon number $\propto |\mathbf{E}|^2$)
- \circ The carrier density, N

$$\frac{dE}{dt} = \frac{1}{2\tau_p} (1+i\alpha)(N-1)E + i\Delta\omega + \sqrt{P_{inj}} + \sqrt{2\beta_{sp}/\tau_N}\xi(t)$$

$$\frac{dN}{dt} = \frac{1}{\tau_N} \left(\mu - N - N|E|^2 \right)$$

$$\int_{\text{Solitary laser parameters: } \alpha \tau_p \tau_N \mu$$

$$\mu: \text{ normalized pump current parameter} \qquad \mu = \mu_{dc} + a_{\text{mod}} \sin(\omega_{\text{mod}} t)$$

Deterministic simulations $(\beta_{sp}=0)$

Campus d'Excel·lència Internacional

Lyapunov diagram

Influence of noise in the Number of RWs

Deterministic RWs (β_{sp} **=0)**

White = No RWs

But with stronger noise $(\beta_{sp}=0.01)$

Weak noise (β_{sp} =0.0001)

Weak noise can reduce the number of RWs; strong noise induces RWs

Point A (deterministic RW): Influence of current modulation

β_{sp}=0

White = No RWs

Current modulation with appropriated amplitude and frequency can completely suppress the RWs.

S. Perrone et al, PRA 89, 033804 (2014)

In point B (no deterministic RW)

Campus d'Excel·lència Internacional

β_{sp}**=0**

White = No RWs

Current modulation induces RWs except in a region of (amplitude, frequency) where no RWs occur.

Histograms of pulse amplitudes

RWs are suppressed because high (but not ultra high) pulses are frequent

- Intensity pulses characterized by long-tailed histograms; giant rare pulses interpreted as Rogue Waves.
- Different types of chaos identified: without and with rogue waves.
- Noise strongly affects the probability of RW occurrence.
- Current modulation (with appropriate amplitude and frequency) can suppress RWs.

THANK YOU FOR YOUR ATTENTION !

<cristina.masoller@upc.edu> Universitat Politecnica de Catalunya http://www.fisica.edu.uy/~cris/

Papers: C. Bonatto et al, PRL 107, 053901 (2011)

- J. Zamura-Munt et al, PRA 87, 035802 (2013)
- S. Perrone et al, PRA 89, 033804 (2014)

