
Network-based data analysis tools for 

identifying and characterizing regime 

transitions in complex systems 
 

 

Cristina Masoller 
Terrassa, Barcelona, Spain 

 

Cristina.masoller@upc.edu 

 

www.fisica.edu.uy/~cris 

NDES 2017 

Zernez, June 2017 



Tipping points in ecosystems 

Is there a way to quantify how close we are to the 

transition point? 

 

Goal: to develop reliable early warning indicators 

Bangladesh, 
Nature 2014 



Dynamical transitions 

in optical systems 

 Polarization switching 

Semiconductor laser output as the 

pump current increases 

 Transition to turbulence 

Time 

Fiber laser output as the pump 

power increases 

Goal: convince you that 

 Network-based data analysis tools provide new insights 

into these phenomena. 

 Optical data can be useful for testing novel analysis tools. 



 How to compare time-evolving climate networks? 

How to detect transitions in 

complex networks? 

El Niño 

years 

La 

Niña 

years 

Tsonis and Swanson, PRL 100, 228502 (2008) 



Functional brain networks 

averaged 

node 

Strength 

averaged 

weighted 

Clustering 

coefficient 

global Efficiency 

Healthy subjects Epileptic patients 

M. Chavez et al., 

PRL 104, 118701 (2010) 

Goal: a tool to 

quantify network 

dissimilarities. 



 

• Early-warning indicators of desertification transition 

 

• Quantifying sudden changes using symbolic networks 

 

• Emergence of temporal correlations in the optical laminar-

turbulence transition 

 

• Quantifying network dissimilarities 

Outline 



Early-warning indicators of 

desertification transition 



 Bifurcation → eigenvalue ‘a’ with 0 real part 

 → long recovery time of perturbations 

 Critical Slowing Down (CSD) 

 CSD → High autocorrelation, variance, spatial 

correlation, etc. 

 

 Can we use network tools to detect tipping points? 

 Yes! 

Early warning indicators 



 w (in mm) is the soil water amount  

 B (in g/m2) is the vegetation biomass  

 Uncorrelated Gaussian white noise  

 R (rainfall) is the bifurcation parameter 

Desertification transition: 

A simple model 

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011) 



Saddle-node bifurcation 

 

R<Rc: only desert-like solution (B=0) 

Rc = 1.067 mm/day   



Biomass B at T=5 days 

when R=1.1 mm/day 

100 m x 100 m → 100x100 = 104 grid cells 

Simulation time 5 days in 500 time steps 

Periodic boundary conditions   



Correlation Network 

Zero-lagged 

cross-correlation 

Threshold  

=0.2 gives p<0.05 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  

Adjacency matrix 



 Degree (number of links of a node) 

   

 

 Assortativity (average degree of 

the neighbors of a node) 

   

 

 Clustering (fraction of neighbors of 

a node that are also neighbors 

among them) 

Network analysis 



Results 

Mean degree 
Standard deviation of 

the degree distribution 

Sharp increase close to the transition captures the 

emergence of spatial correlations 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  



Comparison with classical 

indicators 

Spatially averaged lag-1 

autocorrelation, calculated 

at the final simulation time  

gij = 1 if i and j are adjacent 

grid cells, else gij = 0  

Moran’s coefficient  

Smooth increase does not 

capture the vicinity to the 

transition point 



Network-based indicators 

‘‘Gaussianisation’’ of the clustering and of the assortativity 

distributions when approaching the tipping point  

clustering  

assortativity  

skewness  kurtosis  



Kullback–Leibler Distance (KLD) 

between 2 PDFs 

How to quantify 

‘‘Gaussianisation’’? 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  



 Network-based indicators can identify 

desertification transition in advance. 

 

 Perform better than the classical ones. 

 

 Open issue: the Gaussianisation might a model-

specific feature. 

Summary Part 1 

G. Tirabassi et al., Interaction network based early-warning indicators 

of vegetation transitions, Ecological Complexity 19, 148 (2014)  



Quantifying sudden changes 

using symbolic networks 
- “optical big data”: provides new insight & is 

useful for testing novel diagnostic tools 

Experimental data from INLN & Bangor University 

(S. Barland & Y. Hong) 



Method of nonlinear symbolic time-

series analysis: ordinal patterns 

─ Advantage: the probabilities uncover temporal correlations. 

 X= {…xi, xi+1, xi+2, …}  

 The OP probabilities allow identifying more 

expressed and/or infrequent patterns in the 

order of the sequence of data values. 

Brandt & Pompe, PRL 88, 174102 (2002) 

Random data? 

(OPs equally 

probable) 

─ Drawback: we lose information about the actual values. 

1 2 3 4 5 6 

  Ordinal analysis gives complementary information to 

that gained with other analysis tools.  



The number of patterns 

increases as D! 

Opportunity: turn a time-series into 

a network by using the patterns as 

the “nodes” of the network. 



The network nodes are the “ordinal 

patterns”, and the links? 

Adapted from M. Small (The University of Western Australia) 

• The links are defined in 

terms of the probability of 

pattern “” occurring after 

pattern “”. 

• Weighs of nodes: the 

probabilities of the 

patterns (i pi=1). 

• Weights of links: the 

probabilities of the 

transitions (j wij=1 i).  

Weighted and 

directed network 



Three network-based 

diagnostic tools 

• Entropy computed from the weights of the nodes (permutation 

entropy) 

 

• Entropy computed from weights of the links (transition 

probabilities, ‘01’→ ‘01’, ‘01’→ ‘10’, etc.) 

 

 

 

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc. 

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network) 
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 x(i+1)=r x(i)[1-x(i)]  

C. Masoller et al,  

New J. Phys. 17, 023068 

(2015) 

First test the method 

with synthetic data: 

the logistic map 

Detects transitions 

(not bifurcations) that 

are not detected by 

Lyapunov exponent.  

D=4 

L=6000 



A laser polarization-resolved 

intensity: two sets of experiments  

• Time series recorded with 

laser current constant in time. 

• Record the turn-on of the 

orthogonal mode. 

• Time series recorded 

with laser current 

varying in time. 

• Record the turn-off of 

the fundamental mode. 

Time 

Time 

Is it possible to anticipate the PS? 

No if the mechanisms that trigger the PS are fully stochastic. 



Results for constant pump current & 

turn-on of the orthogonal mode 

C. Masoller et al, New J. Phys. 17 (2015) 023068 

Error bars computed from 100 non-overlapping windows with 

L=1000 data points each. Length of the pattern D=3. 

Despite of the 

stochasticity of 

the time-series, 

the measures 

“anticipate” the 

PS. 

Deterministic 

mechanisms 

involved. 



Influence of the length of the pattern (D)  

and of length of the time-series (L) 

C. Masoller et al, New J. Phys. 17 (2015) 023068 

Transition detected even for short dataset (L=500 with D=3).  

L=1000 D=3 



C. Masoller et al, New J. Phys. 17 (2015) 023068 

Results for time-varying pump current & 

turn-off of the fundamental mode 

Slightly different 

optical feedback 

conditions result 

in PS or no PS.  

 

Analysis done 

with D=3, error 

bars computed 

with 1000 time 

series L=500.  



 In synthetic data: indicators based in symbolic 

networks detect transitions which are not captured 

by Lyapunov analysis. 

 

 In empirical data: they provide early warning 

indicators of polarization-switching. 

 

 Open issue: comparison with other diagnostic tools. 

Summary Part 2 

C. Masoller et al, “Quantifying sudden changes in dynamical systems 

using symbolic networks”, New J. Phys. 17, 023068 (2015). 



Characterizing the laminar-turbulence 

transition in a fiber laser 

Low -- High pump power 

Experimental data from Aston University, UK 

(Prof. Turitsyn’ group) 

  



Most probable intensity 

E. G. Turitsyna et al. Nat. Phot. 7, 783 (2013) 

L=1 km,  

millions of modes 

Experimental data from Prof. Turitsyn’ group 

(Aston University, UK) 

Low High pump 

At the transition: 

Fiber laser 



Analysis of the intensity peaks 

higher than a threshold 

 
Each time series is first normalized to I=0 and =1 

Th = 2: number of 

peaks >104  for all 

values of the pump 

power 

L= 5x107 data points. 

Sampling time dt = 12.5 ps 



A time-series is represented as a graph, where each data point is a node 

Diagnostic tool:  

horizontal visibility graph (HVG) 

HVG method: B. Luque et al, PRE 80, 046103 (2009) 

  Unweighted and undirected graph 

Number of links 

Ordinal pattern 

D=3 

• Rule: data points i and j are connected if there is “visibility” 

between them: Imax,i and Imax,j > Imax,n for all n, i<n<j 

intensity peaks 

above Th = 2 



The resulting network 

How to characterize this network?  



 Degree distribution for 

various pump powers 

using Th=2. 

HVG analysis 

 Entropy of the degree 

distribution (normalized to the 

entropy of Gaussian white noise) 

 Degree Distribution (distribution of the number of links) 

 sharp transition detected. 

Aragoneses et al, PRL 116, 033902 (2016) 



Influence of the threshold 

 sharp 

transition 

detected 

with 

different 

thresholds. 

Raw data {…Ii …}  Th  {…Imax,i …} 

Aragoneses et al, PRL 116, 033902 (2016) 



Influence of the threshold 

Can we obtain more info. from the raw data? 

Raw data {…Ii …}  Th  {…Imax,i …} 

 sharp 

transition not 

detected. 

With the raw data 

Aragoneses et al, PRL 116, 033902 (2016) 



Ordinal analysis of lagged 

intensity data 

Aragoneses et al, PRL 116, 033902 (2016) 

Sharp variations not captured by linear correlation analysis. 

Pump power below, at, and above the transition. 

  ii IIACF  )(



=431 =496  Different 

coherent 

structures 

uncovered with 

different lags 

(sampling 

times). 

Aragoneses et al, PRL 116, 033902 (2016) 
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 The laser intensity dynamics was mapped to a 

complex network. 

 

 Sharp transition seen in thresholded data but not in 

raw data. 

 

 Specific time-scales detected at the transition, not 

captured by linear correlation analysis. 

Summary Part 3 

A. Aragoneses et al, “Unveiling temporal correlations characteristic 

of a phase transition in the output intensity of a fiber laser” 

PRL 116, 033902 (2016). 



Quantifying network 

dissimilarities 



 Degree distribution, closeness centrality, 

betweenness centrality, average path length, etc. 

 Provide partial information. 

 How to define a measure that contains detailed 

information about the global topology of a network, 

in a compact way? 

 Node Distance Distributions (NDDs) 

 pi(j) is the fraction of nodes that are connected to 

node i at distance j 

 NDDs = vector of N pdfs {p1, p2, …, pN} 

 If two networks have the same set of distance 

distributions  the same diameter, average path 

length, etc. 

Complex network measures 



 The Network Node Dispersion (NND) measures the 

heterogeneity of the N pdfs {p1, p2, …, pN} 

 Quantifies the heterogeneity of connectivity distances. 

How to condense the information contained 

in the node-distance distributions? 

d = diameter 

Reminder: 

distance between 

P and Z 



Application.  

The Network Node Dispersion detects: 

Percolation transition in a 

random network 

Small-world region in the Watts-

Strogatz rewiring network 

P=connection probability 

P=rewiring probability 

N=1000, average degree = 10 

L=path length, C=clustering coef. 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 



 Extensive numerical experiments 

demonstrate that Isomorphic graphs 

return D=0 

 

Dissimilarity between two 

networks 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

w1=w2=0.5 

compares the 

averaged 

connectivity 

compares the 

heterogeneity of the 

connectivity distances 



Comparing three networks with the 

same number of nodes and links 

D Hamming Graph 

Edit 

Distance 

N1,N2 0.25 12 6 

N1,N3 0.56 12 6 

N2,N3 0.47 12 6 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 



Comparing real networks 

to null models 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

Details in the supplementary information 

DS preserves 

the degree 

sequence; 

2.0 also 

preserves the 

degree 

correlation; 

2.1 also 

preserves the 

clustering 

coefficient; 

2.5 includes 

the clustering 

spectrum 



Best model of Power Grid 

Network? 

HVG 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

Details in the supplementary information 



Comparing real networks among 

them 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

Details in the supplementary information 



 Use HVG to transform EEG time-series into networks. 

 Weight between two brain regions given by 1-D(G,G’) 

 Identify two brain regions (called ‘nd’ and ‘y’), where the weight 

of the connections between these regions is higher in control 

than in alcoholic networks 

Comparing brain networks 

Hamming D 

T. A. Schieber et al, Nat. Comm. 8:13928 (2017) 

Details in the supplementary information 



 New measure to quantify the heterogeneity of the 

connectivity of a network.  

‒ Uses a set of probability distributions that contain full information 

of the connectivity distances. 

‒ Detects percolation transition in random networks and the limits of 

the small-world region in rewiring networks. 

 

 New measure to compare two networks 

‒ Allows to compare directed/undirected networks, same or different 

sizes. 

‒ Returns D=0 only if the two networks are isomorphic. 

‒ Wide applications to real-world networks. 

Summary Part 4 

T. A. Schieber et al, “Quantification of network structural dissimilarities”, 

Nat. Comm. 8:13928 (2017) 
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