Optimal Entrainment of the Power Dropouts of a Semiconductor Laser with Optical Feedback to Current Modulation

J. Tiana, C. Quintero, M. Panozzo, M. C. Torrent Cristina Masoller

Universitat Politecnica de Catalunya, Terrassa, Barcelona

www.fisica.edu.uy/~cris

Advanced Photonics Congress Zurich, July 2018

Campus d'Excel·lència Internacional

- Characterization of optical spikes
- Control via small electric perturbations

Dynamical transitions in a semiconductor laser with optical feedback

Video: how complex signals emerge from optical noise

Different dynamical regimes are difficult to distinguish.

Can differences be quantified? With what reliability?

How similar these time series are?

Optical spikes

Time

Neuronal spikes

Threshold crossings define "events" in a time series

- Problems:
 - How to select the threshold?
 - Threshold dependent results?

inter-spike-intervals (ISIs):

$$\Delta T_i = t_{i+1} - t_i$$

ISI distribution indicates that neurons and lasers have a similar response to external periodic forcing

Neuron data

Single auditory nerve fiber of a squirrel monkey with a sinusoidal sound stimulus applied at the ear.

A. Longtin et al PRL (1991)

Laser data

Data recorded in our lab when a sinusoidal signal is applied to the laser current.

A. Aragoneses et al Optics Express (2014)

Return maps also suggest that neurons and lasers have similar response to external periodic forcing

- How to identify temporal order?
- Are there more or less expressed "spike patterns"?

A. Longtin Int. J. Bif. Chaos (1993) M. Giudici et al PRE (1997) A. Aragoneses et al Optics Express (2014)

Different methods of time series analysis provide complementary information

- Many methods
 - Correlation analysis
 - Fourier analysis
 - Lyapunov & fractal analysis
 - Symbolic analysis
 - Wavelet analysis
 - Etc. etc.

- The method to be used depends on the data
 - Length
 - Noise
 - Resolution
 - Etc.

Ordinal analysis: a tool to look for patterns in data

- Consider a time series X(t)={...X_i, X_{i+1}, X_{i+2}, ...}
- Which are the possible order relations among three data points?

- Count how many times each "ordinal pattern" appears.
- Advantages: allows to identify temporal structures & is robust to noise.
- Drawback: information about actual data values is lost.

Ordinal analysis of inter-spike intervals

Ordinal analysis identifies the onset of different dynamical regimes, but does not distinguish "noise" and "chaos"

Grey region: probabilities are consistent with the uniform distribution $(P_i = 1/6 \cong 0.17 \ \forall i)$ with 99.7% confidence level

C. Quintero-Quiroz et al, Scientific Reports (2016)

P(210) identifies dynamical regimes in parameter space (pump current, feedback strength)

M. Panozzo et al, Chaos (2017)

Zooming into the region where spikes are well-defined, a transition is detected (not captured by correlation analysis)

A modified circle map: simple minimal model

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} \left[\sin(2\pi\varphi_i) + \alpha_c \sin(4\pi\varphi_i) \right] + D\zeta$$

$$X_i = \varphi_{i+1} - \varphi_i$$

ρ = natural frequency forcing frequency

K = forcing amplitude

D = noise strength

Same "clusters" & same hierarchical structure

A. Aragoneses et al Scientific Reports (2014)

Connection with neurons: the circle map describes many excitable systems

- The modified map describes spike correlations in sensory neurons (Neiman and Russell, PRE 2005)
- Can we test its validity as a minimal model for the laser spikes?

Comparing with synthetic neuronal spikes: good agreement

FHN model with Gaussian white noise and weak sinusoidal input: spikes are noise-induced

$$\epsilon \frac{dx}{dt} = x - \frac{x^3}{3} - y,$$

$$\frac{dy}{dt} = x + a + a_0 \cos(2\pi t/T) + D\xi(t),$$

Aparicio-Reinoso et al, PRE (2016)

Ordinal probabilities uncover the regions of noisy locking

T. Sorrentino et al, JSTQE (2015)

How to *control* the laser spikes? How to *quantify* the degree of entrainment?

Inter-spike time interval distribution as a function of the frequency of the current modulation

$$I_{th, sol} = 26.62 \text{ mA}$$

 $I_{th} = 24.70 \text{ mA}$

$$I_{dc}$$
= 27 mA (f_0 =15 MHz), A_{mod} = 2.3% of I_{dc}

Modulation frequency (MHz)

⇒ "refractory time" clear

⇒ "locking" horizontal

We test three modulation waveforms and quantify locking with the <u>success rate</u> and the <u>false positive rate</u>

$$SR(\tau) = \frac{\text{# of spikes emitted in the interval } \tau}{\text{# of modulation cycles}}$$

$$FPR(\tau) = \frac{\text{# spikes that are not emitted in the time interval } \tau}{\text{Total # of spikes}}$$

Waveform comparison: in color code the success rate (red SR=1)

Modulation frequency

⇒ pulse-down waveform produces a wider locking region

J. Tiana et al., Opt. Express 26 9298 (2018)

And the false positives? (the natural, uncontrolled spikes)

J. Tiana et al., Opt. Express 26, 9298 (2018)

Receiver operating characteristic (ROC) curves

J. Tiana et al., arXiv:1806.08950v1 (2018)

Locked-unlocked transitions when the modulation frequency increases

J. Tiana et al., arXiv:1806.08950v1 (2018)

Role of the laser current (controls the natural spike rate)

Influence of the modulation waveform

Pulsed-down

What did we learn?

- Transition to optical chaos: ordinal analysis distinguishes different regimes.
- Spike patterns that are more/less expressed are not always detected by correlation analysis.
- Minimal model identified (a modified circle map).
- Good agreement between optical & neuron (synthetic) spikes.
- ROC curves allow to quantify the entrainment quality.
- Regions of perfect 1:1 locking identified.

Ongoing work: potential for sensing applications?

To do in the future: The connection with the circle map needs to be explored.

Thank you for your attention

http://www.fisica.edu.uy/~cris

- A. Aragoneses et al., Opt. Express 22, 4705 (2014)
- A. Aragoneses et al., Sci. Rep. 4, 4696 (2014)
- T. Sorrentino et al., JSTQE 21, 1801107 (2015)
- C. Quintero-Quiroz et al., Sci. Rep. 6, 37510 (2016)
- J.M. Aparicio-Reinoso et al., PRE 94, 032218 (2016)
- M. Panozzo et al., Chaos 27, 114315 (2017)
- J. Tiana et al., Opt. Express 26, 9298 (2018)
- J. Tiana et al., arXiv:1806.08950v1 (2018)

