Introduction to nonlinear time series analysis

Cristina Masoller
Universitat Politecnica de Catalunya, Terrassa, Barcelona, Spain

Cristina.masoller@upc.edu
www.fisica.edu.uy/~cris
Who are we?

Dynamics, Nonlinear Optics and Lasers

https://donll.upc.edu/en
Where are we?

1. Barcelona
2. Castelldefels
3. Igualada
4. Manresa
5. Mataró
6. Sant Cugat del Vallès
7. Terrassa
8. Vilanova i la Geltrú
What do we study?

- Nonlinear phenomena
 - Photonics (two labs: dynamics of lasers & nonlinear optics)
 - Biophysics, neuroscience
 - Data analysis and complex systems

Funding: [Logos]
First lecture
- General introduction and historical development
- Univariate time-series analysis
- Bivariate and multivariate time-series analysis

Second lecture
- Identifying dynamical transitions from data

Third lecture
- Climate data analysis
A. General introduction and historical development
Optical spikes

• Similar dynamical systems generate these signals?

Neuronal spikes

• Ok, very different dynamical systems, but their output signals have similar statistical properties?

TSA: what is this about?
How can differences be quantified? With what reliability?

Time
Extract information from data.

What for?
- Classification
- Prediction
- Inference
- Model verification & identification
- Parameter estimation (assuming we have a good model).
Classification: control vs alcoholic subjects

Dissimilarity measure

Hamming distance

Prediction of extreme events: Ultra-intense light pulses
Inference of underlying interactions

Surface Air Temperature Anomalies in different geographical regions

Donges et al, Chaos 2015
Model identification, parameter estimation

Empirical data

Known model

Minimal model

And much more, so let’s begin!
Many methods have been developed to extract information from data.

The method to be used depends on the characteristics of the data:
- Length of the dataset;
- Stationary;
- Level of noise;
- Temporal resolution;
- Single-or-Multi variate (single or multi channel measures);
- etc.

Different methods provide complementary information.
Modeling assumptions about the type of dynamical system that generates the data:

- Stochastic or deterministic?
- Regular or chaotic or “complex”?
- Time-varying parameters?
- Low or high dimensional?
- Spatials variable? Hidden variables?
- Time delays?
- Etc.

And because this is a School, we start with a brief tour of dynamical systems.
Dynamical Systems
In the beginning…

- Mid-1600s: Ordinary differential equations (ODEs)
- **Isaac Newton**: studied planetary orbits and solved analytically the “two-body” problem (earth around the sun).
- Since then: a lot of effort for solving the “three-body” problem (earth-sun-moon) – Impossible.
Henri Poincare (French mathematician).

Instead of asking “which are the exact positions of planets (trajectories)?”

he asked: “is the solar system stable for ever, or will planets eventually run away?”

He developed a geometrical approach to solve the problem.

Introduced the concept of “phase space”.

He also had an intuition of the possibility of chaos.
Poincare: “The evolution of a **deterministic** system can be aperiodic, unpredictable, and strongly depends on the initial conditions”

Deterministic system: the initial conditions fully determine the future state. **There is no randomness but the system can be unpredictable.**
Computes allowed to experiment with equations.

Huge advance of the field of “Dynamical Systems”.

Chaotic motion.
Order within chaos and self-organization

- **Ilya Prigogine** (Belgium, born in Moscow, Nobel Prize in Chemistry 1977)
- Thermodynamic systems far from equilibrium.
- Discovered that, in chemical systems, the interplay of (external) input of energy and dissipation can lead to “self-organized” patterns.
In the 1960s: biological nonlinear oscillators

In the 1960’s he did experiments trying to understand the effects of perturbations in biological clocks (circadian rhythms).

What is the effect of an external perturbation on subsequent oscillations?
The 1970s

- **Robert May** (Australian, 1936): population biology

\[x_{t+1} = f(x_t) \]

Example: \(f(x) = r x(1 - x) \)

- **Difference equations** ("iterated maps"), even though simple and deterministic, can exhibit different types of dynamical behaviors, from **stable points**, to a bifurcating hierarchy of **stable cycles**, to apparently random fluctuations.
The logistic map

\[x(i + 1) = r \cdot x(i) [1 - x(i)] \]

\(r = 2.8 \), Initial condition: \(x(1) = 0.2 \)

Transient relaxation → long-term stability

"period-doubling" bifurcations to chaos

Transient dynamics → stationary oscillations (regular or irregular)
In 1975, **Mitchell Feigenbaum** (American mathematical physicist), using a small HP-65 calculator, discovered the scaling law of the bifurcation points

\[\lim_{n \to \infty} \frac{r_{n-1} - r_{n-2}}{r_n - r_{n-1}} = 4.6692... \]

Then, he showed that the same behavior, with the same mathematical constant, occurs within a wide class of functions, prior to the onset of chaos (**universality**).

Very different systems (in chemistry, biology, physics, etc.) go to chaos in the same way, quantitatively.

HP-65 calculator: the first magnetic card-programmable handheld calculator
Benoit Mandelbrot (Polish-born, French and American mathematician 1924-2010): “self-similarity” and **fractal objects**:

> each part of the object is like the whole object but smaller.

Because of his access to IBM's computers, Mandelbrot was one of the first to use **computer graphics** to create and display fractal geometric images.
Fractal objects

- Are characterized by a “fractal” dimension that measures roughness.

- Broccoli
 \[D = 2.66 \]

- Human lung
 \[D = 2.97 \]

- Coastline of Ireland
 \[D = 1.22 \]

In the 80’s: can we observe chaos experimentally?

- **Optical chaos**: first observed in laser systems.
In the 90’s: can we control chaotic dynamics?

- **Ott, Grebogi and Yorke** (1990)
 Unstable periodic orbits can be used for control: wisely chosen periodic kicks can maintain the system near the desired orbit.

- **Pyragas** (1992)
 Control by using a continuous self-controlling feedback signal, whose intensity is practically zero when the system evolves close to the desired periodic orbit but increases when it drifts away.
Experimental demonstration of control of optical chaos
The 1990s: synchronization of two chaotic systems
Pecora and Carroll, PRL 1990

Unidirectionaly coupled Lorenz systems: the ‘x’ variable of the response system is replaced by the ‘x’ variable of the drive system.

\[t \to \infty \quad |y_2 - y_1| \to 0, \quad |z_2 - z_1| \to 0 \]
Interesting but … useful?

- Transmission of secure information (Cuomo–Oppenheim, PRL 1993)

Is the system secure?

- It is possible to break the system and extract the message (G. Perez y H. Cerdeira, PRL 1995)
Different types of synchronization

- **Complete (CS):** $x_1(t) = x_2(t)$ (identical systems)
- **Phase (PS):** the phases of the oscillations synchronize, but the amplitudes are not.
- **Lag (LS):** $x_1(t+\tau) = x_2(t)$
- **Generalized (GS):** $x_2(t) = f(x_1(t))$ (f depends on the strength of the coupling)

A lot of work is being devoted to detect synchronization in real-world data.
Experimental observation of synchronization in coupled lasers
Synchronization of a large number of coupled oscillators

Figure 1: Fireflies, fireflies burning bright. In the forests of the night, certain species of firefly flash in perfect synchrony — here *Pteroptyx malaccae* in a mangrove apple tree in Malaysia. Kaka et al.² and Mancoff et al.³ show that the same principle can be applied to oscillators at the nanoscale.
Kuramoto model
(Japanese physicist, 1975)

Model of all-to-all coupled phase oscillators.

\[
\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i) + \xi_i, \quad i = 1...N
\]

K = coupling strength, ξ_i = stochastic term (noise)

Describes the emergence of collective behavior

How to quantify?

With the order parameter:

\[
r e^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}
\]

r =0 incoherent state (oscillators scattered in the unit circle)
r =1 all oscillators are in phase ($\theta_i=\theta_j \forall i,j$)
Synchronization transition as the coupling strength increases

Strogatz and others, late 90’s

Strogatz, Nature 2001

Video: https://www.ted.com/talks/steven_strogatz_on_sync
Interest moves from chaotic systems to complex systems (small vs. very large number of variables).

Networks (or graphs) of interconnected systems

Complexity science: dynamics of emergent properties
- Epidemics
- Rumor spreading
- Transport networks
- Financial crises
- Brain diseases
- Etc.
The challenge: to understand how the network **structure** and the **dynamics** (of individual units) determine the collective behavior.

Strogatz
Nature 2001,
Dynamical systems allow to
- understand low-dimensional systems,
- uncover “order within chaos”,
- uncover universal features
- control chaotic behavior.

Complexity science: understanding emerging phenomena in large sets of interacting units.

Dynamical systems and complexity science are interdisciplinary research fields with many applications.
B. Univariate time-series analysis
Examples of empirical time series to be discussed

Laser intensity

Surface air temperature (SAT)
SAT anomalies: solar cycle removed

North pole

Uruguay

South pole

El Niño3.4
First step: Look at the data.

Examine simple properties:
- auto correlation,
- Fourier spectrum,
- return map (x_i vs $x_{i+\tau}$),
- histogram
Autocorrelation: measures memory

\[c(\tau) = \frac{\text{cov}(X(t), X(t + \tau))}{\sigma_X^2} \]

\[c(\tau) \sim \exp\left\{ -\frac{\tau}{\tau_d} \right\} \]

zonal wind (anomalies) at the equator (solid) and at mid-latitudes (dashed)

In mid-latitudes the atmosphere is more turbulent and the autocorrelation decay to zero faster than in the equator.

Source: G. Tirabassi PhD thesis
Our climate: a very complex system with a wide range of time-scales
- hours to days,
- months to seasons,
- decades to centuries,
- and even longer...

An “artist’s representation” of the power spectrum of climate variability (Ghil 2002).
Analysis of NINO3.4 (monthly resolution)

Noise test: 100 noise processes with same autocorrelation at lag 1 and variance as NINO3.4

Periodogram

significant peaks at 3-4 years

Source: G. Tirabassi PhD thesis
Example: Threshold crossings

inter-spike-intervals (ISIs): $\Delta T_i = t_{i+1} - t_i$

Problems:
- How to select the threshold?
- Threshold dependent results?
Empirical neuronal data

FIG. 1. (a) An experimental ISI histogram obtained from a single auditory nerve fiber of a squirrel monkey with a sinusoidal 80-dB sound-pressure-level stimulus of period $T_0 = 1.66$ ms applied at the ear. Note the modes at integer multiples of T_0. Inset:

A. Longtin et al, PRL 67 (1991) 656
Neuronal ISIs

Laser ISIs

Return maps: ΔT_i vs. ΔT_{i+1}

Fig. 4. Scatter plot of spike train data obtained from extracellular measurements of cat auditory fiber activity in response to an 800 Hz 60 dB sound pressure level pure tone presented to the outer ear. The stimulus is discontinuous (see

A. Longtin IJBC 3 (1993) 651

ISI serial correlation coefficients

\[\{ \ldots I_{i-1}, I_i, I_{i+1} \ldots \} \quad C_j = \frac{\langle (I_i - \langle I \rangle) (I_{i-j} - \langle I \rangle) \rangle}{\sigma^2} \]

Neuron 1 Neuron 2 Laser ISIs

HOW TO IDENTIFY TEMPORAL ORDER?
MORE/LESS EXPRESSED PATTERNS?
Next step: Methods to identify patterns and structure in time series

1. Phase-space reconstruction

2. Symbolic analysis

3. Mapping a time series into a network

4. Space-time representation of a time series

5. Extracting phase and amplitude information

6. And many more
1. Phase-space reconstruction
Time-delay coordinates

\[y(t) = (s(t), s(t+\tau), \ldots, s(t+(d-1)\tau)) \]

d reconstruction dimension
\(\tau \) delay time

state space \(M \)

flow \(\phi^t \)

Adapted from U. Parlitz
Reconstruction using delay coordinates

A problem: finding good embedding (lag τ, dimension d)

After reconstructing the attractor, we can characterize the TS by the fractal dimension and the Lyapunov exponent.

Bradley and Kantz, CHAOS 25, 097610 (2015)
In general chaotic attractors have fractal dimensions.
A stable fixed point has negative λs (since perturbations in any direction die out)

An attracting limit cycle has one zero λ and negative λs

A chaotic attractor as at least one positive λ.
Jacobian methods: compute the complete set of LE from the Jacobian of the underlying flow. Since the dimension of the phase space is often unknown, the number of LEs is unknown.

Direct methods: compute the largest LE, directly from the time series.
Steps to compute the maximum LE

- Initial distance \(\delta_I = |s_i - s_j| \)
- Final distance \(\delta_F = |s_{i+T} - s_{j+T}| \)
- Local exponential growth \(\lambda_{local}^* = \frac{1}{T} \log(\delta_F / \delta_I) \)
- The rate of grow is averaged over the attractor, which gives \(\lambda_{\text{max}} \)

a word of warning!

- The rate of growth depends on the direction in the phase space.

- The algorithm returns the value in the direction with fastest expansion.

- Therefore, the algorithm always returns a positive number!

- This is a problem when computing the LE from noise-contaminated data.

 Read more: Chaos vs. noise in experimental data. F. Mitschke and M. Damming, IJBC 3, 693 (1993)
Practical implementation of nonlinear time series methods:
The TISEAN package

Rainer Hegger and Holger Kantza)
Max Planck Institute for Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany

Thomas Schreiber
Department of Physics, University of Wuppertal, D-42097 Wuppertal, Germany

Nonlinear time-series analysis revisited

Elizabeth Bradley\textsuperscript{1,a)} and Holger Kantz\textsuperscript{2,b)}
1Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430, USA and Santa Fe Institute, Santa Fe, New Mexico 87501, USA
2Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38 D, 01187 Dresden, Germany
2. Symbolic analysis
The time series \(\{x_1, x_2, x_3, \ldots\} \) is transformed (using an appropriated rule) into a sequence of symbols \(\{s_1, s_2, \ldots\} \) taken from an “alphabet” of possible symbols \(\{a_1, a_2, \ldots\} \). Then consider “blocks” of D symbols (“patterns” or “words”). All the possible words form the “dictionary”.

Then analyze the “language” of the sequence of words

- the probabilities of the words,
- missing/forbidden words,
- transition probabilities,
- information measures (entropy, etc).
Threshold transformation
(phase space partition)

- if \(x_i > x_{th} \) \(\Rightarrow \) \(s_i = 0 \); else \(s_i = 1 \)
 transforms a time series into a sequence of 0s and 1s, e.g.,
 \{0111000010111111\ldots\}

- Considering “blocks” of \(D \) letters gives the sequence of words. Example, with \(D=3 \):
 \{011 100 001 011 111 \ldots\}

- The number of words (patterns) grows as \(2^D \)

- More thresholds allow for more letters in the “alphabet” (and more words in the dictionary). Example:
 \[
 \begin{align*}
 &\text{if } x_i > x_{th1} \Rightarrow s_i = 0; \\
 &\text{else if } x_i < x_{th2} \Rightarrow s_i = 2; \\
 &\text{else } (x_{th2} < x_i < x_{th1}) \Rightarrow s_i = 1.
 \end{align*}
 \]
- **Ordinal rule**: \(x_i > x_{i-1} \Rightarrow s_i = 0; \text{ else } s_i = 1 \)

also transforms a time-series into a sequence of 0s and 1s **without** using a threshold

- “words” of D letters are formed by considering the **order relation** between sets of D values \{\ldots x_i, x_{i+1}, x_{i+2}, \ldots\}.

\[
\begin{align*}
D &= 3 \\
1 & \quad 3 & \quad 5 \\
2 & \quad 4 & \quad 6
\end{align*}
\]

Bandt and Pompe PRL 88, 174102 (2002)
Logistic map

\[x(i + 1) = r \times x(i) [1 - x(i)] \]

Time series

Detail

Histogram D=3 Patterns

Histogram \(x(t) \)

↑ forbidden

Ordinal analysis yields information about more and less expressed patterns in the data.
- **D=3**: correlations among 3 *inter-spike-intervals* (ISIs).

- The number of patterns grows as **D**!

- How to quantify the information?
 - Permutation entropy (more latter)
 \[s_p = -\sum p_i \log p_i \]

- How to select optimal **D**?
 - The length of the data.
 - The length of the correlations
Threshold transformation:
\[\text{if } x_i > x_{th} \Rightarrow s_i = 0; \text{ else } s_i = 1 \]
- **Advantage**: keeps information about the magnitude of the values.
- **Drawback**: how to select an adequate threshold (“partition” of the phase space).

Ordinal transformation:
\[\text{if } x_i > x_{i-1} \Rightarrow s_i = 0; \text{ else } s_i = 1 \]
- **Advantage**: no need of threshold; keeps information about the temporal order in the sequence of values.
- **Drawback**: no information about the actual data values.

\[2^D \]
Constructing longer words

... $x(t), x(t + 1), x(t + 2), x(t + 3), x(t + 4), x(t + 5)\ldots$

- But long time series will be required to estimate the probabilities of the fast growing number of words in the dictionary ($D!$).

- Solution: a lag τ allows considering long time-scales without having to use words of many letters

... $x(t), x(t + 2), x(t + 4),\ldots$

- Example: climatological data (monthly sampled)
 - Consecutive months: $[...x_i(t), x_i(t + 1), x_i(t + 2)\ldots]$
 - Consecutive years: $[...x_i(t), x_i(t + 12), x_i(t + 24)\ldots]$

- Varying $\tau = \text{varying temporal resolution (sampling time)}$
Lag-time is very useful for climate data: allows selecting time-scale of the analysis

- **Green** triangles: intra-seasonal pattern,
- **blue** squares: intra-annual pattern
- **red** circles: inter-annual pattern

Monthly resolution

Example of application of ordinal analysis to ECG-signals

Time series of **inter-beat intervals**

healthy subject

congestive heart failure

R. Friedrich et al. / Physics Reports 506 (2011) 87–162
Classifying ECG-signals according to the frequency of words

Perm \((i,D,\text{lag})\) (the probabilities are normalized with respect to the smallest and the largest value occurring in the data set)
Python and Matlab codes for computing the OP probabilities from a time-series are available here:

Another example of application: the spiking laser output

Video: how complex optical signals emerge from noisy fluctuations

N. Rubido, J. Tiana et al, PRE 84, 026202 (2011)
- Assuming that we have a suitable symbolic description of the time series.
- What information can we extract from the sequence of “words”?
- How much information is in the time-series?
- Analogy with deciphering a foreign text.

(Information theory quantifiers will be described by Prof. Osvaldo Rosso)
Information theory measure: Shannon entropy

- The time-series is described by a set of probabilities $\sum_{i=1}^{N} p_i = 1$

- Shannon entropy: $H = -\sum_{i} p_i \log_2 p_i$

- Interpretation: “quantity of surprise one should feel upon reading the result of a measurement”

 K. Hlavackova-Schindler et al, Physics Reports 441 (2007)

- Simple example: a random variable takes values 0 or 1 with probabilities: $p(0) = p$, $p(1) = 1 - p$.

 $H = -p \log_2(p) - (1 - p) \log_2(1 - p)$.

 $\Rightarrow p=0.5$: Maximum unpredictability.

Permutation Entropy: computed from ordinal probabilities
3. Mapping a time series into a network
The number of patterns increases as $D!$

Opportunity: turn a time-series into a network by using the patterns as the “nodes” of the network.
The network nodes are the “ordinal patterns”, and the links?

- The links are defined in terms of the probability of pattern “β” occurring after pattern “α”.
- Weights of nodes: the probabilities of the patterns ($\sum_i p_i=1$).
- Weights of links: the probabilities of the transitions ($\sum_j w_{ij}=1 \ \forall i$).

\Rightarrow Weighted and directed network

Adapted from M. Small (The University of Western Australia)
Three network-based diagnostic tools

- Entropy computed from the weights of the nodes (permutation entropy)
 \[s_p = -\sum p_i \log p_i \]

- Entropy computed from weights of the links (transition probabilities, '01'→ '01', '01'→ '10', etc.)
 \[w_{ij} = \frac{\sum_{t=1}^{L-1} n[s(t) = i, s(t + 1) = j]}{\sum_{t=1}^{L-1} n[s(t) = i]} \]

- Asymmetry coefficient: normalized difference of transition probabilities, \(P('01'\rightarrow '10') - P('10'\rightarrow '01') \), etc.
 \[a_c = \frac{\sum_i \sum_{j\neq i} |w_{ij} - w_{ji}|}{\sum_i \sum_{j\neq i} (w_{ij} + w_{ji})} \]
 (0 in a fully symmetric network; 1 in a fully directed network)
Again the Logistic map

\[x(i + 1) = r \ x(i) [1 - x(i)] \]
Another way to turn a time-series into a network: visibility graph

A time-series is represented as a graph, where each data point is a node.

- Black dots indicate observations (nodes). Links (gray lines) are added between mutually visible observations.
- Ice core $\delta^{18}O$ isotope record from Greenland during the last glacial allows to study regime shifts in paleoclimate dynamics.

Donges et al, Chaos 2015
A simpler version: the horizontal visibility graph (HVG)

- **Rule**: data points i and j are connected if there is “visibility” between them: $I_{\text{max},i}$ and $I_{\text{max},j} > I_{\text{max},n}$ for all n, $i < n < j$

 ⇒ **Unweighted and undirected graph**

HVG method: B. Luque et al, PRE 80, 046103 (2009)
M. Gomez Ravetti et al, PLOS one 2014
Intensity of a fiber laser
Low -- High pump power

How to characterize the graph?
Degree Distribution (distribution of the number of links)

Degree (number of links of a node) distributions:

Strogatz, Nature 2001
HVG Entropy: entropy of the degree distribution

Degree distribution

Aragoneses et al, PRL 116, 033902 (2016)
4. Space-time representation of a time series
Let’s assume that the TS has a characteristic time-scale τ.

$$t = \sigma + n \tau$$

σ = “space-like” variable

n = “time-like” variable

Synthetic data: laser model, time-delay τ

C. Masoller, Chaos 7, 455 (1997)
How to identify the characteristic time scale?

$$\{ I_i, I_{i+\tau}, I_{i+2\tau}, \ldots \}$$

Empirical fiber laser raw data

Pump power below, at, and above the transition.

- 0.85
- 0.90
- 0.95

⇒ Sharp variations not captured.

Aragoneses et al, PRL 116, 033902 (2016)
Space-time representation of a time-series

\[t = \sigma + n \tau \]

\[\tau = 431\text{dt}, 496\text{dt} \]

\[\sigma \]

⇒ Different “spatial” structures uncovered with different sampling times.

Aragoneses et al, PRL 116, 033902 (2016)
5. Extracting phase and amplitude information
Defining instantaneous amplitude, and phases from data

Surface air temperature (SAT)

\[HT[x] = \cos(\omega t) \]

\[\begin{align*}
 a(t) &= \sqrt{[x(t)]^2 + [y(t)]^2} \\
 \varphi(t) &= \arctan[y(t)/x(t)]
\end{align*} \]
For a real time series $x(t)$ defines an analytic signal

$$\zeta(t) = x(t) + iy(t) = a(t)e^{i\phi(t)}$$

$$y(t) = H[x(t)] = \pi^{-1} \text{P.V.} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t-\tau} d\tau$$

A word of warning:
Although formally $a(t)$ and $\phi(t)$ can be defined for any $x(t)$, they have a clear physical meaning only if $x(t)$ is a narrow-band oscillatory signal: in that case, the $a(t)$ coincides with the envelope of $x(t)$ and the instantaneous frequency, $\omega(t) = d\phi/dt$, coincides with the main frequency in the power spectrum.
Example

Rossler

Read more:

A. Pikovsky, M. Rosenblum and J. Kurths 2001
Can we use the Hilbert amplitude, phase, frequency, to investigate:

- Synchronization in climate data?
- To identify and quantify regional climate change?

Problem: climate time series are not narrow-band.

Usual solution (e.g. brain signals): isolate a narrow frequency band.

However, HT applied to Surface Air Temperature time series yields meaningful insights.
From each SAT time series we compute
- Time averaged amplitude, $\langle a \rangle$
- Time averaged frequency, $\langle \omega \rangle$
- Standard deviations, σ_a, σ_ω
- Phase diffusion coefficient, D
- Etc.
The expected value is 0.017 rad/day (one year cycle)

Zappala, Barreiro and Masoller, Entropy 18, 408 (2016)
6. And many more TS analysis methods
And many MANY other methods to characterize and extract “features” from TS

- How to compare different methods?
- How to identify similar time-series?
- How to identify similar methods?
 - HCTSA: highly comparative time-series analysis
 - From each TS extracts over 7700 features

B. D. Fulcher, N. S. Jones: *Automatic time-series phenotyping using massive feature extraction*. arXiv:1612.05296v1
Matlab code: www.github.com/benfulcher/hctsa
C. Bivariate and multivariate time-series analysis
Two time series X, Y: Cross-correlation analysis

$$\rho_{X,Y}(\tau) = \frac{\text{cov}(X(t), Y(t + \tau))}{\sqrt{\sigma_X^2 \sigma_Y^2}} = \frac{E[(X(t) - \mu_X)(Y(t + \tau) - \mu_Y)]}{\sqrt{\sigma_X^2 \sigma_Y^2}}$$

- $-1 \leq \rho_{X,Y} \leq 1$

- $\rho_{X,Y} = \rho_{Y,X}$

- The maximum of $\rho_{X,Y}(\tau)$ indicates the lag that renders the time-series X and Y best aligned.
Lags between the SAT time-series at a reference point located in Australia, and all the other time-series.

Tirabassi and Masoller EPL 102, 59003 (2013)
Cross-correlation analysis detects linear relationships only
An illustrative example: the story of the number of sunspots and the number of the Republicans in the U.S. Senate in the years 1960-2006

C=0.52
For data sets sampled, from independent, identically distributed, normally distributed populations (IID Gaussian distributions) and significance level of 95%, the threshold value is 0.458.

Therefore, the null hypothesis (independent processes) should be rejected.

Something is clearly wrong!

Incorrect interpretation of an incorrectly applied statistical test.

\[MI = \sum_{i \in x} \sum_{j \in y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right) \]

- \(MI (x,y) = MI (y,x) \)
- \(p(x,y) = p(x) \ p(y) \Rightarrow MI = 0, \) else \(MI > 0 \)
- \(MI \) can also be computed with a lag-time.
Mutual information maps

- MI between SAT anomalies time-series at a reference point located in El Niño, and all the other time-series.

Histograms

Inter-annual ordinal patterns

3 months ordinal patterns

3 years ordinal patterns

Ordinal analysis separates the times-scales of the interactions

Another similarity measure

- Similarity function: \[S^2(\tau) = \frac{\langle [x_2(t + \tau) - x_1(t)]^2 \rangle}{\langle x_1^2(t) \rangle \langle x_2^2(t) \rangle}^{1/2} \]

Two mutually coupled (instantaneous coupling) Rossler oscillators: lag synchronization as the coupling increases
From phase to lag synchronization

Frequency difference $\Omega_2 - \Omega_1$

Minimum of the similarity function

Coupling strength ε

Using similarity measures to infer interactions: “functional networks”
Complex network representation of the climate system

Back to the climate system: interpretation (currents, winds, etc.)

More than 10000 nodes.

Daily resolution: more than 13000 data points in each TS

Sim. measure + threshold

Surface Air Temperature Anomalies (solar cycle removed)

Donges et al, Chaos 2015
Brain network

Climate network

Weighted degree
Influence of the threshold

\[\rho = 0.027 \hspace{1cm} \rho = 0.01 \hspace{1cm} \rho = 0.001 \]

M. Barreiro, et. al, Chaos 21, 013101 (2011)
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

Jonathan F. Donges*, Jobst Heitzig, Boyan Beronov, Marc Wiedermann, Jakob Runge, Qing Yi Feng, Liubov Tupikina, Veronika Stolbova, Reik V. Donner, Norbert Marwan, Henk A. Dijkstra, and Jürgen Kurths

Citation: Chaos 25, 113101 (2015); doi: 10.1063/1.4934554
View online: http://dx.doi.org/10.1063/1.4934554

pyunicorn is available at https://github.com/pik-copan/
pyunicorn as a part of PIK’s TOCSY toolbox (http://tocsy.pik-potsdam.de/).
Main problem: how to infer the network?

- How to select the threshold?
- In “spatially embedded networks”, nearby nodes have the strongest links.
- How to select weak-but-significant links?
- There are many methods to infer bi-variate interactions from observations.

- Can we test them?

- Yes, if we use a “toy model” where we know the real connectivity (“the ground truth”).
Definitions

- **Sensitivity** (also called the true positive rate): proportion of existing links that are correctly identified.

- **Specificity S** (also called the true negative rate): proportion of non-existing links that are correctly identified.

- **False positive rate** (“false alarms”) proportion of non-existing links that are incorrectly identified.
Receiver operating characteristic (ROC curve)
Kuramoto oscillators in a random network

\[\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} A_{ij} \sin(\theta_j - \theta_i) dt + D \, dW_t^i \]

\(A_{ij} \) is a symmetric random matrix;
\(N=12 \) time-series, each with \(10^4 \) data points.

Phases (\(\theta \))

<table>
<thead>
<tr>
<th>CC</th>
<th>MI</th>
<th>MIOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positives</td>
<td>False positives</td>
<td>True positives</td>
</tr>
</tbody>
</table>

“Observable” \(Y = \sin(\theta) \)

Results of a 100 simulations with different oscillators’ frequencies, random matrices, noise realizations and initial conditions. For each \(K \), the threshold was varied to obtain optimal reconstruction.
Instantaneous frequencies ($d\theta/dt$)

Perfect network inference is possible!

BUT

- the number of oscillators is small (12),
- the coupling is symmetric (\Rightarrow only 66 possible links) and
- the data sets are long (10^4 points)

We also analyzed experimental data recorded from 12 chaotic Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform was used to obtain phases from experimental data

• Kuramoto Oscillators' Network

\[
\theta_i, \quad f_i = \dot{\theta}_i, \quad Y_i = \sin(\theta_i)
\]

• Rössler Oscillators' Network

\[
\varphi_i = HT(x_i), \quad f_i = \dot{\varphi}_i, \quad x_i
\]
Results obtained with experimental data

<table>
<thead>
<tr>
<th>Variable</th>
<th>CC</th>
<th>MI</th>
<th>MIOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed variable (x)</td>
<td>No perfect reconstruction</td>
<td>No important difference</td>
<td>among the 3 methods & 3 variables</td>
</tr>
</tbody>
</table>
Concluding
• Symbolic analysis, network representation, spatiotemporal representation, etc., are useful tools for investigating complex signals.
• Different techniques provide *complementary* information.

“…nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems…”

Bradley and Kantz, CHAOS 25, 097610 (2015)
References

- Bandt and Pompe PRL 88, 174102 (2002)
- N. Rubido, J. Tiana et al, PRE 84, 026202 (2011)
- M. Barreiro, et. al, Chaos 21, 013101 (2011)
- Tirabassi and Masoller, EPL 102, 59003 (2013)
- C. Masoller et al, NJP 17, 023068 (2015)
- Aragoneses et al, PRL 116, 033902 (2016)
- Zappala, Barreiro and Masoller, Entropy 18, 408 (2016)
<cristina.masoller@upc.edu>

http://www.fisica.edu.uy/~cris/