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Regime transitions in 

dynamical systems 
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Video: how complex optical signals 

emerge from noisy fluctuations 
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Similarity with neuronal dynamics? 

https://youtu.be/nltBQG_IIWQ
https://youtu.be/nltBQG_IIWQ


Is there a way to quantify how close we are to the 

transition point? 

 

Goal: to develop reliable early warning indicators 

Bangladesh, 
Nature 2014 

Tipping points in ecosystems 



 How can we compare  

different networks? 

Main Goal: 

to develop a 

measure 

that allows 

a precise 

comparison 

of complex 

networks 

(including 

different 

sizes) 



Same number of nodes and links 

How to measure distances between networks? 



 

 How optical chaos emerges from noise? 

‒ Comparison with neuronal dynamics: emergence of 

temporal correlations in neuronal spikes 

 

 Early-warning indicators of desertification transition 

 

 Quantifying network dissimilarities 

 

 Predicting extreme optical pulses 

 

Outline 



How optical chaos emerges 

from noise? 



10 

01 

Consistent with stochastic 

dynamics at low pump current, 

signatures of “determinism” at 

higher pump currents. 
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1010, 1001 

Emergence of temporal correlations 

in the spiking activity of the laser 

0110, 0101 

Laser current 

N. Rubido, J. Tiana-Alsina, et al, Phys. Rev. E 84, 026202 (2011) 
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Ordinal analysis allows to quantify the 

onset of different dynamical regimes 

C. Quintero-Quiroz et al, Sci. Rep. 6, 37510 (2016) 

https://www.nature.com/articles/srep37510.pdf
https://www.nature.com/articles/srep37510.pdf
https://www.nature.com/articles/srep37510.pdf


Ordinal probabilities identify 

regions of noisy locking 

T. Sorrentino et al, JSTQE 21, 1801107 (2015) 
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Time/Tmod 

2:1 

3:1 

 T   2 T mod 

4:1 

http://www.fisica.edu.uy/~cris/Pub/JSTQE_2015.pdf
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Contrasting empirical optical spikes 

with synthetic neuronal spikes 

 
- do they have similar ordinal statistics?  

- are there more/less frequent patterns? 

 



Ordinal analysis of ISI correlations in the 

region of low-frequency fluctuations 

Close to threshold Higher pump current 

Grey region 

99.7% 

confidence 

level.  

Ordinal bifurcation diagram 

P =1 /6; N > 10,000 ISIs 
A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)  

https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf


Is the “transition” detected 

by correlation analysis? 
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 not detected. 

 

 C2 is very small  no 

significant linear correlation 

between Ii and Ii+2  

 

 But ordinal probabilities are 

not consistent with equally 

probable patterns. 
 

A. Aragoneses et al,  

Sci. Rep. 4, 4696 (2014)  

Laser current 

https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf


Empirical laser data 
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Circle map data 

Minimal model of ISI nonlinear 

correlations: modified circle map 

=0.23, K=0.04, D=0.002 

iiiX   1

• Same “clusters” & same hierarchical structure. 

• Modified circle map: minimal model for ordinal correlations. 

• Same qualitative behavior found with other lasers & feedback conditions. 

 = natural frequency 

        forcing frequency 

K = forcing amplitude 

D = noise strength 

Lang-Kobayashi 

time-delay model 

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)  

https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
https://www.nature.com/articles/srep04696.pdf
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 The circle map describes many excitable systems. 

 The modified circle map has been used to describe 

spike correlations in biological neurons. 

A. B. Neiman and D. F. Russell, Models of stochastic 

biperiodic oscillations and extended serial correlations in 

electroreceptors of paddlefish, PRE 71, 061915 (2005) 

 

 

Connection with neurons 
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Empirical laser data 

Modulation amplitude applied 

to the laser current (%) 
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FHN neuron model 

Gaussian white noise and subthreshold 

(weak) modulation: a0 and T such that 

spikes are only noise-induced. 
Time series with 100,000 ISIs simulated. 

T=20 

D=0.015 

FHN model 
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Empirical laser data 

Modulation amplitude applied 

to the laser current (%) 

 Good 

    qualitative 

    agreement. 



Analysis of ISI sequences 

generated by FHN model 

 
- how a single neuron encodes information about 

a weak external signal? 



FHN model: role of (white) noise 

a0=0 

a0=0.02 

T=10 

a0=0.02 

T=20 

• No signal  no noise-induced temporal ordering. 

• Subthreshold periodic input induces temporal ordering. 

• Preferred ordinal patterns depend on the period and on the 

noise strength. 

• Resonant-like behavior. 

Aparicio-Reinoso, Torrent and Masoller, PRE 94, 032218 (2016) 

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218


Role of the (subthreshold) 

modulation amplitude 

T=20 

D=0.035 
T=20 

D=0.015 

• The amplitude of the (weak) modulation does not 

modify the preferred and the infrequent patterns. 

• The ordinal probabilities encode information about the 

signal’s amplitude. 



Role of the modulation period 

a0=0.02 

D=0.015 
a0=0.02 

D=0.035 

Which is the underlying mechanism? A change of the spike rate? 

  the spike rate does 

not encode information 

of period of the weak 

signal. 

• More probable patterns depend on the period of the 

external input and on the noise strength. 



Length of ISI correlations 
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But using patterns with two 

letters (comparing only two 

consecutive time intervals) 

Aparicio-Reinoso, Torrent and Masoller, PRE 94, 032218 (2016) 

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218
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http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032218


 Transition to optical chaos: different regimes can be 

quantitatively distinguished. 

 Minimal model for optical spikes identified (modified circle map) 

 Optical & neuronal spikes compared: good qualitative 

agreement. 

 FHN neuron model with weak forcing and white noise: 

‒ Preferred ordinal patterns depend on the noise strength and 

on the period of the input signal. 

‒ resonance-like behavior: certain periods and noise levels 

maximize the probabilities of the preferred patterns. 

 Open questions: why the ordinal probabilities are “clustered”? 

 Robust mechanism for neuronal encoding of weak periodic 

inputs? 

What did we learn?   



Early-warning indicators of 

desertification transition 



 Bifurcation → eigenvalue with 0 real part 

 → long recovery time of perturbations 

 Critical Slowing Down (CSD) 

 CSD → High autocorrelation, variance, spatial 

correlation, etc. 

 

 Can we use “correlation networks” to detect tipping 

points? 

 

 “correlation networks”? 

Early warning indicators 



 w (in mm) is the soil water amount  

 B (in g/m2) is the vegetation biomass  

 Uncorrelated Gaussian white noise  

 R (rainfall) is the bifurcation parameter 

Desertification transition: 

model 

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011) 



Saddle-node bifurcation 

 

R<Rc: only desert-like solution (B=0) 

Rc = 1.067 mm/day   



Biomass B when R=1.1 mm/day 

100 m x 100 m = 104 grid cells 

Simulation time 5 days in 500 time steps 

Periodic boundary conditions   



Correlation Network 

Zero-lagged 

cross-correlation 

Threshold  

=0.2 gives p<0.05 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  

Adjacency matrix 

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


 Degree (number of links of a node) 

   

 

 Assortativity (average degree of 

the neighbors of a node) 

   

 

 Clustering (fraction of neighbors of 

a node that are also neighbors 

among them) 

Network analysis 



Results 

Mean degree 
Standard deviation of 

the degree distribution 

Sharp increase close to the transition captures the 

emergence of spatial correlations 



Network-based indicators 

‘‘Gaussianisation’’ of the clustering and of the assortativity 

distributions when approaching the tipping point  

clustering  

assortativity  

skewness  kurtosis  



Kullback–Leibler Distance (KLD) 

between 2 PDFs 

How to quantify 

‘‘Gaussianisation’’? 

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)  

 Open issue: the 

“Gaussianisation” 

might be a model-

specific feature. 

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf
http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


Laser empirical data 

• We analyze time series recorded at  constant laser current. 

• Record the polarization mode that turns on. 

Is it possible to anticipate the PS? 

No if the mechanisms that trigger the PS are fully stochastic. 



The network nodes are the “ordinal 

patterns”, and the links? 

Adapted from M. Small (The University of Western Australia) 

• The links are defined in 

terms of the probability of 

pattern “” occurring after 

pattern “”. 

• Weighs of nodes: the 

probabilities of the 

patterns (i pi=1). 

• Weights of links: the 

probabilities of the 

transitions (j wij=1 i).  

Weighted and 

directed network 



Three network-based 

diagnostic tools 

• Entropy computed from the weights of the nodes (permutation 

entropy) 

 

• Entropy computed from weights of the links (transition 

probabilities, ‘01’→ ‘01’, ‘01’→ ‘10’, etc.) 

 

 

 

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc. 

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network) 



Error bars computed from 100 non-overlapping windows with 

L=1000 data points each. Length of the pattern D=3. 

Despite of the 

stochasticity of 

the time-series, 

the measures 

“anticipate” the 

PS. 

Deterministic 

mechanisms 

involved. 

C. Masoller et al, NJP 17, 023068 (2015) 

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf
http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf
http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf
http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Quantifying network 

dissimilarities 

Coauthors: T. A. Schieber, L. Carpi, M. G. 

Ravetti (Bello Horizonte, Brazil), A. Diaz-

Guilera (UB), P. M. Pardalos (Florida, US) 



 Degree distribution, closeness centrality, betweenness 

centrality, average path length, etc. 

 Provide partial information. 

 How to define a measure that contains detailed 

information about the global topology of a network, in a 

compact way? 

 Node Distance Distributions (NDDs) 

 pi(j) of node “i“ is the fraction of nodes that are connected 

to node i at distance j 

 If a network has N nodes: 

  NDDs = vector of N pdfs {p1, p2, …, pN} 

 If two networks have the same set of NDDs  they have 

the same diameter, average path length, etc. 

Complex network measures 



 The Network Node Dispersion (NND) measures the 

heterogeneity of the N pdfs {p1, p2, …, pN} 

 Quantifies the heterogeneity of connectivity distances. 

How to condense the information contained 

in the node-distance distributions? 

d = diameter 

Reminder: 

distance between 

P and Z 



Example of application: 

percolation transition 

 in a random network 

the Network Node 

Dispersion detects the 

percolation transition 

P=connection probability 

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017) 

http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf


 Extensive numerical experiments demonstrate that 

isomorphic graphs return D=0 

 

Dissimilarity between two 

networks 

w1=w2=0.5 

compares the 

averaged 

connectivity 

compares the 

heterogeneity of the 

connectivity distances 



Comparing three networks with the 

same number of nodes and links 

D Hamming Graph 

Edit 

Distance 

N1,N2 0.25 12 6 

N1,N3 0.56 12 6 

N2,N3 0.47 12 6 



Comparing real networks 

to null models 

DS preserves 

the degree 

sequence; 

2.0 also 

preserves the 

degree 

correlation; 

2.1 also 

preserves the 

clustering 

coefficient; 

2.5 includes 

the clustering 

spectrum 



 Synthetic model for Power Grid Network? 



Horizontal Visibility Graph applied 

to synthetic data 

fractional Brownian Motion 

(fBm) with controllable Hurst 

exponent 

 



HVG 

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017) 

http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf


 EEG data 

‒ https://archive.ics.uci.edu/ml/datasets/eeg+database 

‒ 64 electrodes placed on the subject’s scalp 

sampled at 256 Hz during 1s 

‒ 107 subjects: 39 control and 68 alcoholic 

 Use HVG to transform each EEG TS into a network G. 

 Weight between two brain regions: 1-D(G,G’) 

 The resulting network represents the weighted 

similarity between the brain regions of an individual. 

  We can compare the different individuals. 

Comparing brain networks 



We identified two 

regions of the 

brain (called ‘nd’ 

and ‘y’), where the 

weight of the 

connections 

between these 

regions is higher in 

control than in 

alcoholic 

networks. 



Hamming distance Dissimilarity measure 

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017) 

http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf
http://www.nature.com/articles/ncomms13928.pdf


 New measure to quantify the heterogeneity of the 

connectivity paths of a single network.  

‒ detects the percolation transition in a random network. 

 New measure to calculate the distance between two 

networks 

‒ Can be applied to networks of different sizes. 

‒ Returns D=0 only if the two networks are 

isomorphic. 

 Many possible applications: characterizing time-

evolving climate networks, classification of networks 

generated from biomedical data, etc. 

Summary 



Predicting extreme optical 

pulses 



Extreme events in nature  

Optical chaos: provides 

an opportunity to advance 

predictability. 



Optical rogue waves 
Solli et al, Nature 2007 

 Optical systems can 

contribute to understand 

the mechanisms capable 

of triggering / suppressing 

extreme events. 

 Optical systems generate 

“big data”, valuable for 

testing diagnostic tools for 

“early warnings” of 

extreme events. 

 The study of extreme 

pulses can yield new light 

into nonlinear & stochastic 

phenomena in optical 

systems. 

 



Birkholz et al, Predictability of Rogue Events, 

PRL 114, 213901 (2015) 
“Transferring these findings to 

ocean rogue waves, one may at 

best expect to predict an ocean 

rogue wave a few tens of 

seconds before impact, and it 

would require many future 

sightings to isolate 

characteristic patterns 

preceding an ocean rogue wave. 

 

Therefore any practical rogue 

wave prediction appears not 

overly realistic, despite the 

determinism in the system.” 

Predictability? 



• Parameters: 

o Injection ratio 

o Frequency detuning (controlled 

via the pump current) 

ORW:  pulse above  

              <A> + 6-8  

 

 

 

 

 

 

Intensity time series 

PDF 

“Deterministic” optical rogue 

waves 

C. Bonatto et al, Phys. Rev. Lett. 107, 053901 (2011) 

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.053901


RW predictability 

4 

J. Zamora-Munt et al, PRA 87, 035802 (2013) 

Experiments 

Superposition of 500 TS 

at the RW peak 

8 

Deterministic simulations 

Superposition of 50 time-series at the RW peak 

 Well-defined 

oscillation pattern 

anticipates extreme 

pulses. 

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.035802


Ordinal analysis 

 Consider the sequence of intensity peak heights (red dots): 

 {…Ii, Ii+1, Ii+2, …}  

 We calculate the probability of the pattern that occurs before 

each high pulse: 

 If Ii > TH, we analyze the pattern defined by (Ii-3, Ii-2, Ii-1) 

 Possible order relations of 

three consecutive values: 

201 



Results:  

deterministic simulations 

 

Black lines:  

99% confidence 

pi=1/6  i 

 P(201)=1 if TH >6  

Model and parameters as in J. Ahuja et al, Optics Express 22, 28377 (2014). 

 Problem: P(201)0 

if TH <6 (pattern 

201 also 

anticipates some 

small pulses)  

false alarms (false 

positives) 



 Two different modulation frequencies 

Including noise and current 

modulation 

In the first case: 210 is a “good” warning. 

“early warning pattern” varies with parameters and might not exist. 



Analysis of experimental data 

Way to improve the 

“early warning”: 

 Filter noise 

 Longer patterns 

{…Ii, Ii+1, Ii+2, Ii+3, …}  
 



 In synthetic data: certain patterns of oscillations can be 

more (or less) likely to occur before the extreme pulses. 

 

 In experimental data (work in progress): to identify 

patterns that anticipate the extreme pulses, noise 

needs to be filtered. 

 

 The analysis of the pattern probabilities can provide 

complementary information to advance RW 

predictability. 

 

 Open issue: applicability to real-word time-series? 

Summary 
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