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 Many methods have been developed to test for 
determinism, nonlinearity and correlations in data 
generated from complex systems (climate, brain EEGs, 
financial data, social systems, etc). 

 

 The appropriateness of the method depends on the 
characteristics of the time series  

− short or long;  

− stationary or not;  

− more or less noisy;  

− multi or single channel measurements,  

− discrete or continuous values, etc. 

 

 Different methods provide complementary information. 

 

 

Nonlinear time-series analysis 
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 Threshold crossings 

Event-like description of a signal 
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… and many others. 



 Consider a time series {x1, x2, …. , xN} generated from a complex system. 

 

 First step: Look at the time series. Examine simple properties: auto/cross 
correlation, Fourier spectrum, return map (xi vs x i+), histogram, etc. 

 

 

Visual inspection of time-series 

26/04/2013 
5 C. Masoller, Second LINC School 

0 1 2 3 4

x 10
-6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-6

x
i

x i+
1

6 8 10 12

x 10
-7

6

7

8

9

10

11

12

x 10
-7

x
i

x i+
1

0 1 2 3 4

x 10
-6

0

200

400

600

800

1000

1200

x
i

H
is

to
g
ra

m

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4
x 10

-6

i

x i

0 200 400 600 800 1000
4

6

8

10

12
x 10

-7

i

x i



Two main approaches to identify patterns and ordering in the 
sequence 

 

 Phase-space reconstruction methods 

- Time-delay coordinates 

- Derivative coordinates 

 

 Symbolic methods 

 

They allow for model verification, forecasting, classification of 
different types of behaviors, noise reduction, etc. 

 

Next: capture hidden structures  
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Reconstruction using delay 

coordinates 

Adapted from U. Parlitz, MPI for Complex Systems, Germany 
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A problem: finding good embedding 



 The time series {x1, x2, x3, …} is transformed (using an appropriated 
rule) into a sequence of symbols {s1, s2, …}  

 

 taken from an “alphabet” of possible symbols {a1, a2, …}.  

 

 Then consider “blocks” of D symbols (“patterns” or “words”). 

 

 All the possible words form the “dictionary”. 

 

 Then analyze the “language” of the sequence of words 
- the probabilities of the words, 

- missing/forbidden words,  

- transition probabilities,  

- symbolic information measures (entropy, mutual information, etc). 

Symbolic analysis 
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 Binary transformation rule 

 

 if xi > xth   si = 0; else si =1 

 

 transforms a time series into a sequence of 0s and 1s, e.g., 
{011100001011111…} 

 

 Considering “blocks” of D=3 letters gives the sequence of 
words: 

 

 {011   100    001    011   111 …} 

 

Example 
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 Ordinal transformation: 

 

 if xi > xi-1   si = 0; else si =1  

 

 also transforms a time-series into a sequence of 0s and 

1s.  

 

 “words” of D letters are formed by considering the order 

relation between sets of D values {…xi, xi+1, xi+2, …}.  

 

 

Another symbolic 

transformation 
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Example: the logistic map 
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 x(i+1)=r x(i)[1-x(i)]               f(x)=r x (1-x) 
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 Period 2 (r=3.5)                          Chaos 

Example: the logistic map 
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 x(i+1)=r x(i)[1-x(i)]  



 x(i+1)=4x(i)[1-x(i)]  

Ordinal analysis of the 

dynamics of the logistic map 
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 Rule: if xi > xi-1   si = 1 ; else si =2 

1 2 



 Words of length D are determined by the order the values 
appear in the time series: each element of a “block” of length 
D is replaced by a number from 0 to D − 1 (0: the smallest 
element; D − 1: the longest element in each “block”). 

 

 Example: D=3 

 

 

  

 {… x(t), x(t+1), x(t+2)…} = {…5,−1, 10…}  

 

 the set (5, -1, 10) gives word 102 because x(t+1)<x(t)<x(t+2) 

 

 In the list 102 is word number 3 

Words of length D 
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Logistic map: symbolic dynamics 

characterized with D=3 words 
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 Was proposed by Bandt and Pompe in 2002 (Phys. Rev. Lett. 88, 174102). 

 

 It has been successfully applied to the analysis of complex signals 

- Financial 

- Biological, life sciences 

- Geosciences, climate 

- Physics, chemistry, etc 

 

 It has been used to: 

- Distinguish stochasticity and determinism in high-dimensional systems 

- Classify different types of dynamical behaviors (pathological, healthy) 

- Quantify complexity 

- Identify coupling and directionality, etc. 

Ordinal analysis 
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Construction principle of ordinal 

patterns (OPs) of length D  

 

Only 2 possible directions from x1 

to x2: up or down. 

 

From x3: 3 possible directions. 

 

From x4: 4 possible directions. 
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 For words of length D there are D! possible words in the 
dictionary. 

Ordinal patterns 

D=4 
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 The number of words in the 

“dictionary” grows fast with D  

Ordinal patterns 

D=5 
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Ordinal analysis is becoming 

very popular  
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 Binary transformation: if xi > xth   si = 0; else si =1 

 

 Number of words of length D in the “dictionary”: 2D 

 

D=3    000  001  010  011   100  101  110  111 
       

─ More thresholds allow for more letters in the “alphabet” (and more 
words in the dictionary). Example:  

 if xi > xth1   si = 0;  

 else if xi < xth2  si =2;  

 else (xth2 <x i < xth1)  si =1.  
 

─ Advantage: keeps information about the magnitude of the values. 

 

─ Drawback: requires the existence of one or more adequate thresholds. 

Advantages and drawbacks of fix 

threshold method 
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 Ordinal transformation: words defined by order relations 
  

 Number of words of length D in the “dictionary”: D! 

 

 D=3   012     021     102    120   201    210 

 

─ Advantage: keeps information about the order in which the values 
appear in the sequence; does not need threshold 

 

─ Drawback: the information about the absolute magnitudes is lost 

 

 

 

 

Advantages and drawbacks of 

ordinal symbolic method 

Not surprisingly, extensions 

are being proposed to 

overcome this problem. 

Fadlallah et al, PRE 2013 
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 With OP method, to consider long time scales we 
need either a very long time series (to reliable 
compute probabilities) or a lag (more latter). 

Number of words of D letters in 

the dictionary 
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 Assuming that we have a suitable symbolic 

description of the time series. 

 

 What information can we obtain from the 

sequence of “words”? 

 

 Analogy with deciphering a foreign text. 

Next? 
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 Number of forbidden patterns (D = 3), found in 1000 
time series generated with the logistic map (r=4), as a 
function of the length of the series. 

Forbidden patterns 
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M. Zanin et al, Entropy 14, 1553 (2012) 



Application: missing patterns as a 

signature of stochasticity 
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Pairs of synchronized dropouts are labeled as 1 if the dropout 

of SL1 occurs earlier than the one of SL2, else are labeled 0. 

 Intensities of two 
coupled lasers 

 Words are formed 
with 8 letters; the 
number of words in 
the dictionary is 28 
= 256. 

Less stochastic 

J. Tiana-Alsina et al, Phil. Trans. Royal Soc. A 368, 367 (2010) 
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 How much information is in a time-series? 

 

 Consider the probabilities associated to a discrete 
variable 

 

 

 Shannon Entropy: 

 

 Interpretation: “quantity of surprise one should feel 
upon reading the result of a measurement” [K. Hlavackova-
Schindler et al, Physics Reports 441 (2007)] 

 

. 

 

 

 

 

 

 

Information theory measure: 

Shannon entropy 
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 Simple example: suppose that a random variable 

takes values 0 or 1 with probabilities:  

 p(0) = p, p(1) = 1 − p. 

 

 H = −p log2(p) − (1 − p) log2(1 − p). 

 

. 

 

 

 

 

 

Shannon entropy 


i

ii ppH 2log
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 Consider a time series and its 

ordinal representation in terms 

of “words” of length D. 

 

 

Permutation Entropy 

The entropy computed from 

the probabilities of the words is 

the Permutation Entropy. 
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Recent reviews 
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 See also EPJST 2013, special issue on PE. 

 

 



Example: the logistic map 

x(i+1)=4x(i)[1-x(i)] 
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Histogram words D=3 Histogram x(i) 

Permutation entropy 

is computed from the 

word probabilities 
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Shannon entropy is computed 

from x(i) probability distribution 

function (PDF). 



Permutation entropy and 

Lyapunov exponent 

Parameter r 
Bandt and Pompe PRL 2002 
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Entropy per symbol: 



Permutation entropy and noise 

No noise 

Weak noise (lower 

line), stronger noise 

(upper line) 

Weak noise (lower 

line) to stronger 

noise (upper line) 
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Bandt and Pompe PRL 2002 



Application 
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 For climatological data (assuming monthly data): 

− Consecutive months: 

− One year: 

− Consecutive years: 

− etc 

Constructing longer words 

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

 Solution: a lag allows considering long time-scales without having 
to use words of many letters 
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)...]5( ),4(),3(),2(),1( ),( [...  txtxtxtxtxtx

),...]4(),2(),( [...  txtxtx

 But long time series will be required to estimate the probabilities 
of the fast growing number of words in the dictionary (D!).  

)...]8( ),...4( ),...([...  txtxtx iii



Application 
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 Distinguishing patients suffering from congestive heart failure (CHF) from a 
(healthy) control group using beat-to-beat (inter-beat intervals) time series 

 

CHF 

Healthy subject 



Application 
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 After pre-processing the signals, classification is done in 
terms of the probability of occurrence of a word “i” with “D” 
letters, constructed with lag “l” 

Lag: l=3 (skip 3 peaks) 

Letters: D=4 

Word: i=3 

 



Classifying ECG-signals according 

to the appearance of words  
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(the probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set) 
Perm (i,D,lag) 



Matlab code + Exercise 

• ts: Time 

series 

• wl: Length of 

the word (D) 

• lag 

Code for generating the words: 
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 Exercise: compute the “ordinal” bifurcation diagram 
of the logistic map (word probabilities vs r) for 
various D values, compute the PE and discuss the 
effect of “observational” noise. 

Also for Pyton: 



Expect something like this 
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Application: decoding the spike code of a 

diode laser with feedback 

Is there any information in the inter-dropout-

interval (IDI) sequence?  

 
Mirror 
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High dimensional 

and stochastic 

system 



“language” analysis: word probabilities 

10 

01 

Consistent with stochastic dynamics 

at low pumps, but signatures of 

determinism at higher pump currents 
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“language” analysis: transition 

probabilities 

1010, 1001 

0110, 0101 

Consistent with stochastic dynamics 

at low pumps, but signatures of 

determinism at higher pump currents. 
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But at low pump currents: inter-

dropout-intervals not fully random 

A. Aragoneses et al, to appear in Scientific Reports (2013) 

D=2 D=3 
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 Ordinal analysis can be used to quantify similarity, infer 
coupling and directionality from time series. 

 

 A key concept: the mutual information. 

Two or more time series X, Y 
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 Joint entropy: 

Similarity measure: mutual 

information 
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 If X and Y are independent: H(X,Y) = H(X) + H(Y) 

 Mutual Information:  MI(X,Y) = H(X) + H(Y) – H(X,Y) 

 

 

 

 It reflects the reduction in uncertainty of one variable by knowing the 
other one. 

 

 X and Y are independent  MI(X,Y) = 0.  

 

 This does not hold for the cross-correlation. 
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 Illustrative example: The 
number of Republicans in 
the U.S. Senate and the 
sunspot number in the 
period 1960-2006. 

Problem with cross-correlation 
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N

t

jiji txtxC
1

 )( )( (xi, xj normalized to zero mean and unit standard deviation) 



 Distribution of CC values 

- Between the number of the 
Republican senators in the 
period 1960-2006 (24 samples) 
with 24-sample sets randomly 
drawn from the Gaussian 
distribution (dashed);  

- between the number of the 
Republican senators in the 
period 1960-2006 (24 samples) 
with the 24-sample segment of 
the sunspot numbers randomly 
permutated in the temporal order 
(IID surrogate, dash-and-dotted ) 

- two 24-sample sets randomly 
drawn from a Gaussian 
distribution (solid). 

An illustrative example: number 

of sunspots and senators 
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Vertical line: correlation between the number of 

the Republican senators and the sunspot 

numbers for the period 1960-2006. 

M. Palus, Contemporary Physics 48, 307 (2007)   



 OK. But: Computing probabilities from histograms give MI values that 
fluctuate or are systematically overestimated. 

 

Problem with mutual 

information 
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R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002). 

 X and Y are independent  MI(X,Y) = 0.  



An example from neural coding 
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Numerical simulation of neuronal response to 2 different stimulus: 

 

 Non-informative neuron: fires (with uniform probability) 1-10 
regardless of the stimulus 

 

 Informative neuron: fires (with uniform probability)  
• 1–6 spikes to stimulus 1  

• 5–10 spike to stimulus 2. 



An example from neural coding 
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 Distribution (5,000 simulations) of the MI values obtained with 20 (top) and 100 (bottom) 
trials per stimulus respectively. As the number of trials increases, both the information 
bias and the dispersion decrease. The dashed line indicates the true MI value.  

 



 MI values for real and surrogated and data. 

 problem for identifying weak significant links. 

Another example: monthly-averaged 

SAT anomalies 
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Directionality: conditional mutual 

information 
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 Conditional mutual information: CMI(X,Y|Z) = H(X|Z)+H(Y|Z)-H(X,Y|Z) 

 

 If X and Y are independent of Z: CMI(X,Y|Z) = MI(X,Y) 

 

 We want to estimate the net information concerning the future of the 
process X1 that is contained within the process X2 

 I21 = CMI(X2,X1|X1) 

 

 I21=0: there is no information in X2 about the future of X1 

MI(X,Y) = H(X) + H(Y) – H(X,Y) 

] ),...1()1( ),()([... 111   txtxtxtxX ii

PCMI = Permutation conditional mutual information 



Example: the cardio-respiratory 

interaction 

26/04/2013 54 

 X1 = phase of the heart 

 X2= phase of the respiration 

 dots: real data 

(averaged for each 

patient, using two 

methods for computing 

pdfs: 8-bin histograms 

and D=4 OPs)  

 x: the same, surrogate 

data 



(Permutation) Directionality index 
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Coupled chaotic systems: symbolic analysis to 
characterize the synchronization transition 
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 is a “global” indicator: it provides no information about the 
microscopic local dynamics in the nodes. 

 

 Alternative: analyze the transition to synchronization in terms of the 
diversity of the symbolic “language” of the nodes. 

 A popular synchronization quantifier: 
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 In each network node, compute the transition probability from word  to 

word  

 

 

 

 where n is a count of the number of occurrences in node i. 

 Then, the “language” diversity can be quantified in terms of the 

heterogeneity of the probabilities among the nodes: 

 

 

 

 This provides a quantifier for each TP (). 
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N=200 

D=2 

o: bin 

: OP  

Masoller & Atay, EPJD 62, 119 (2011) 

 Transition 
probabilities 
in 20 
randomly 
selected 
nodes 

Two clusters before synchronization 

when the coupling strength increases 
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N=200 

 

 

 

 

D=2 

o: bin 

: OP  

 Transition 
probabilities 
in 20 
randomly 
selected 
nodes 

No clustering before synchronization when 

the delay heterogeneity increases 



The coupling strength is 
close to synchronization 
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 Symbolic time series analysis 

 Ordinal analysis 

 Information theory measures 

 Examples 

 Application to climate data analysis 

Outline 
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 The data: monthly-averaged surface air temperature anomalies (SATA). 

 

− Reanalysis data from National Center for Environmental Prediction, 
National Center for Atmospheric Research (NCEP-NCAR, USA).  

 

− Regular grid of nodes covering the Earth's surface with resolution 2.5 x 2.5 
(about 250 kms by 250 kms in the equator): 10,226 nodes. 

 

− January 1949 -- December 2006: in each node we have 696 data points 
(58 years x 12 months). 

 

 Network representation: 

 

− Area-weighted connectivity: plot of the % of the Earth each node is 
connected to (no information about the connections). 

 

− Connections of one node with all the other nodes: plot of cross-correlation 
(CC) or MI values. 

 

Ordinal pattern analysis of 

climatological data 
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Visual inspection of time series 

(monthly averaged SAT anomalies) 
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 CC: computed from SATA values 

 

 MI: computed from histogram of SATA values. 

 

 MI: computed from ordinal patterns (D=4, D=5 lag=1 allows to 
consider consecutive months; lag=4 allows to consider 1 year 
period, lag=12 allows to consider consecutive years). 

 

 MI: also computed from binary representations (SATA, one 
threshold at xth =0), allows to consider words with more letters. 

Similarity measures used to 

construct climate networks 
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An  example of cross correlation 

plot 
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Cross correlation plots 
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In what follows: CC/MI computed with zero-lag. For lag-

times effects:  Giulio’s presentation 

SAT SATA 



 Simplest option: consider that links are statistically 

significant if similarity values (CC/MI) are larger than 

those obtained with surrogated shuffled data. 

 

Thresholding 
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PDF computed with 

10,226x10,226 

values. Similar 

results when using 

a local threshold for 

each node (from 

PDFs computed 

with 10,226 values). 



AWC CC values 
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 Climate network constructed with CC 

and keeping all the significant links 



AWC (all significant) 10% strongest links 
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 Climate network constructed with CC 



AWC MI values 
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 MI (histogram of anomaly values) and 

keeping all the significant links 



AWC (CC) AWC (MI) 
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 Comparison CC – MI at 10% density 



AWC MI values 
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 MI (OPs 4 years) and keeping all the 

significant links 

Barreiro, Martí and Masoller, Chaos 21, 013101 (2011) 



AWC MI values 

26/04/2013 C. Masoller, Second LINC School 73 

 MI (OPs 4 months) and keeping all the 

significant links 



The results are robust when a 

more tolerant threshold is used 
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Networks with higher link density are obtained, which display a 

richer pattern of teleconections: Ignacio’s presentation. 

 

The link significance should be carefully examined in order to 

avoid disregarding weak but significant links. 



D=5 

25=32 
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D=6 

26=64 

26/04/2013 

 MI (BINARY consecutive years) 
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D=5 
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D=6 

 1% and 0.1% 

connectivity: 

very different 

networks. 

 Stronger links 

(0.1%): the 

network is 

almost the 

same for D=5 

and D=6. 
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 MI (BINARY consecutive months) 
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 MI (BINARY): influence of the pattern time-interval for 

fixed the length (D=6) and network density (0.1%) 

 



ij random in [0,11] 

 Problem: visualization of the 

network via the AWC  
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10% 

Zero-lag 



Zero lag 

 CC of the node with largest AWC 

(“hub”) 

 
ij random in [0,11] 

10% 



Zero-lags 

 Considering the strongest links (1%) 

 
ij random in [0,11] 

AWC 

HUB 



Zero-lag 

 Even stronger (0.1%) 

 
ij random in [0,11] 

AWC 

HUB 
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 Summary and future work 

 Symbolic analysis is a powerful tools for the analysis of data from 
complex systems such as the climate. 

 

 The success of the method is based on an appropriate symbolic 
representation that fully characterizes the diversity of patterns present 
in the time-series.  

 

 Allows to study processes with different time scales. 

 

 Problems identified: i) significant weak links might be hidden by noise; 
ii) because the network is embedded in a regular grid, the stronger links 
are mainly local connections and iii) the AWC does not reveal the rich 
underlying pattern of weak non-local connections.  

 

 Future work: detection of link directionality and relations among 
different variables (construction of interacting networks). 


