Introduction to symbolic time series analysis applied to climatological data

Cristina Masoller
Universitat Politècnica de Catalunya
cristina.masoller@upc.edu, www.fisica.edu.uy/~cris
- Symbolic time series analysis
- Ordinal analysis
- Information theory measures
- Examples
- Application to climate data analysis
Many methods have been developed to test for determinism, nonlinearity and correlations in data generated from complex systems (climate, brain EEGs, financial data, social systems, etc).

The appropriateness of the method depends on the characteristics of the time series
- short or long;
- stationary or not;
- more or less noisy;
- multi or single channel measurements,
- discrete or continuous values, etc.

Different methods provide complementary information.
Event-like description of a signal

- **Threshold crossings**

- **Extreme values**

- **Bin counting**

... and many others.
Consider a time series \(\{x_1, x_2, \ldots, x_N\} \) generated from a complex system.

First step: Look at the time series. Examine simple properties: auto/cross correlation, Fourier spectrum, return map \((x_i \text{ vs } x_{i+\tau})\), histogram, etc.
Two main approaches to identify patterns and ordering in the sequence

- Phase-space reconstruction methods
 - Time-delay coordinates
 - Derivative coordinates

- Symbolic methods

They allow for model verification, forecasting, classification of different types of behaviors, noise reduction, etc.
Reconstruction using delay coordinates

A problem: finding good embedding

Adapted from U. Parlitz, MPI for Complex Systems, Germany
The time series \(\{x_1, x_2, x_3, \ldots \} \) is transformed (using an appropriated rule) into a sequence of symbols \(\{s_1, s_2, \ldots \} \) taken from an “alphabet” of possible symbols \(\{a_1, a_2, \ldots \} \).

Then consider “blocks” of D symbols (“patterns” or “words”).

All the possible words form the “dictionary”.

Then analyze the “language” of the sequence of words

- the probabilities of the words,
- missing/forbidden words,
- transition probabilities,
- symbolic information measures (entropy, mutual information, etc).
- **Binary transformation rule**

 if \(x_i > x_{th} \) \(\Rightarrow \) \(s_i = 0 \); else \(s_i = 1 \)

 transforms a time series into a sequence of 0s and 1s, e.g.,
 \{011100001011111…\}

- **Considering “blocks” of D=3 letters gives the sequence of words:**

 \{011 100 001 011 111 …\}
Ordinal transformation:

\[
\text{if } x_i > x_{i-1} \Rightarrow s_i = 0; \text{ else } s_i = 1
\]

also transforms a time-series into a sequence of 0s and 1s.

“words” of D letters are formed by considering the order relation between sets of D values \{\ldots x_i, x_{i+1}, x_{i+2}, \ldots\}.
Example: the logistic map

- \(x(i+1) = r \cdot x(i) [1 - x(i)] \)
- \(f(x) = r \cdot x \cdot (1 - x) \)

Graphs showing the behavior of the logistic map for different values of \(r \):
- \(r = 2.8 \)
- \(r = 3.3 \)
- \(r = 3.5 \)
- \(r = 3.9 \)

Initial condition: \(x_0 = f(x_0) \)
Example: the logistic map

- $x(i+1) = r \times (1 - x(i))$

Period 2 ($r = 3.5$)

Chaos

```latex
\begin{align*}
  x(i+1) &= r \times (1 - x(i)) \\
  x_n &= x_n \\
  x_{n+1} &= x_{n+1}
\end{align*}
```
Ordinal analysis of the dynamics of the logistic map

- $x(i+1)=4x(i)[1-x(i)]$

Rule: if $x_i > x_{i-1}$ \Rightarrow $s_i = 1$; else $s_i = 2$
Words of length D are determined by the order the values appear in the time series: each element of a “block” of length D is replaced by a number from 0 to D − 1 (0: the smallest element; D − 1: the longest element in each “block”).

Example: D=3

\[
\{… x(t), x(t+1), x(t+2)…\} = \{…5, -1, 10…\}
\]

the set (5, -1, 10) gives word 102 because \(x(t+1) < x(t) < x(t+2)\)

In the list 102 is word number 3
Logistic map: symbolic dynamics characterized with D=3 words

Time series

Detail

Histogram of words D=3

Word 6 forbidden

- It has been successfully applied to the analysis of complex signals:
 - Financial
 - Biological, life sciences
 - Geosciences, climate
 - Physics, chemistry, etc.

- It has been used to:
 - Distinguish stochasticity and determinism in high-dimensional systems
 - Classify different types of dynamical behaviors (pathological, healthy)
 - Quantify complexity
 - Identify coupling and directionality, etc.
Construction principle of ordinal patterns (OPs) of length D

Only 2 possible directions from x_1 to x_2: up or down.

From x_3: 3 possible directions.

From x_4: 4 possible directions.
For words of length D there are $D!$ possible words in the dictionary.

$D=4$

$\begin{align*}
1 & \quad 7 & \quad 13 & \quad 19 \\
2 & \quad 8 & \quad 14 & \quad 20 \\
3 & \quad 9 & \quad 15 & \quad 21 \\
4 & \quad 10 & \quad 16 & \quad 22 \\
5 & \quad 11 & \quad 17 & \quad 23 \\
6 & \quad 12 & \quad 18 & \quad 24 \\
\end{align*}$

$\begin{align*}
(2.22, 4.21, 1.30, 3.76) \\
(3, 1, 4, 2) \\
I=11
\end{align*}$

C. Masoller, Second LINC School
The number of words in the “dictionary” grows fast with D
Ordinal analysis is becoming very popular

Citation Report
Title: Permutation entropy: A natural complexity measure for time series
Author(s): Bandt, C; Pompe, B
Source: PHYSICAL REVIEW LETTERS Volume: 88 Issue: 17 Article Number: 174102
10.1103/PhysRevLett.88.174102 Published: APR 29 2002

Timespan=All Years. Databases=SCI-EXPANDED, A&HCI, SSCI, CPCI-SSH, CPCI-S

This report reflects citations to source items indexed within Web of Science. Perform a Cited Reference Search to include cited indexed within Web of Science.
Advantages and drawbacks of fix threshold method

- **Binary** transformation: if \(x_i > x_{th} \) \(\Rightarrow \) \(s_i = 0 \); else \(s_i = 1 \)

Number of words of length \(D \) in the “dictionary”: \(2^D \)

\[
\begin{array}{cccccccc}
D=3 & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\end{array}
\]

- More thresholds allow for more letters in the “alphabet” (and more words in the dictionary). Example:
 - if \(x_i > x_{th1} \) \(\Rightarrow \) \(s_i = 0 \);
 - else if \(x_i < x_{th2} \) \(\Rightarrow \) \(s_i = 2 \);
 - else \((x_{th2} < x_i < x_{th1}) \Rightarrow s_i = 1\).

- Advantage: keeps information about the magnitude of the values.

- Drawback: requires the existence of one or more adequate thresholds.
Advantages and drawbacks of ordinal symbolic method

- **Ordinal** transformation: words defined by order relations

> Number of words of length D in the “dictionary”: $D!$

$D=3$ 012 021 102 120 201 210

- Advantage: keeps information about the order in which the values appear in the sequence; does not need threshold

- Drawback: the information about the absolute magnitudes is lost

> Not surprisingly, extensions are being proposed to overcome this problem.

Fadlallah et al, PRE 2013
With OP method, to consider long time scales we need either a very long time series (to reliably compute probabilities) or a lag (more latter).
Assuming that we have a suitable symbolic description of the time series.

What information can we obtain from the sequence of “words”?

Analogy with deciphering a foreign text.
Number of forbidden patterns ($D = 3$), found in 1000 time series generated with the logistic map ($r=4$), as a function of the length of the series.

M. Zanin et al, Entropy 14, 1553 (2012)
Application: missing patterns as a signature of stochasticity

- Intensities of two coupled lasers

Pairs of synchronized dropouts are labeled as 1 if the dropout of SL1 occurs earlier than the one of SL2, else are labeled 0.

- Words are formed with 8 letters; the number of words in the dictionary is $2^8 = 256$.

Less stochastic

Information theory measure: Shannon entropy

- How much information is in a time-series?

- Consider the probabilities associated to a discrete variable

 \[\sum_{i=1}^{N} p_i = 1 \]

- **Shannon Entropy:**

 \[H = - \sum_{i} p_i \log_2 p_i \]

- **Interpretation:** "quantity of surprise one should feel upon reading the result of a measurement" [K. Hlavackova-Schindler et al, Physics Reports 441 (2007)]
Shannon entropy

\[H = -\sum_i p_i \log_2 p_i \]

- Simple example: suppose that a random variable takes values 0 or 1 with probabilities:
 \[p(0) = p, \ p(1) = 1 - p. \]

- \[H = -p \log_2(p) - (1 - p) \log_2(1 - p). \]
Consider a time series and its ordinal representation in terms of “words” of length D.

The entropy computed from the probabilities of the words is the Permutation Entropy.
Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review

Massimiliano Zanin 1,2,3, *, Luciano Zunino 4,5, Osvaldo A. Rosso 6,7 and David Papo 1

- See also EPJST 2013, special issue on PE.
Example: the logistic map
\[x(i+1) = 4x(i)[1-x(i)] \]

Time series

Histogram words \(D=3 \)

Permutation entropy is computed from the word probabilities

Detail

Histogram \(x(i) \)

Shannon entropy is computed from \(x(i) \) probability distribution function (PDF).
Permutation entropy and Lyapunov exponent

Entropy per symbol:

\[h_n = \frac{H(n)}{(n - 1)} \]

Parameter \(r \)

Bandt and Pompe PRL 2002

C. Masoller, Second LINC School
Permutation entropy and noise

No noise

Weak noise (lower line), stronger noise (upper line)

Weak noise (lower line) to stronger noise (upper line)

Bandt and Pompe PRL 2002
Distinguishing Noise from Chaos

O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, and M. A. Fuentes

(a) MPR–Complexity vs. Entropy

(b) MPR–Complexity vs. Entropy for different values of α and k.
Constructing longer words

\[\ldots x(t), x(t+1), x(t+2), x(t+3), x(t+4), x(t+5) \ldots \]

- But long time series will be required to estimate the probabilities of the fast growing number of words in the dictionary (D!).

- Solution: a lag allows considering long time-scales without having to use words of many letters

\[\ldots x(t), x(t+2), x(t+4), \ldots \]

- For climatological data (assuming monthly data):
 - Consecutive months: \[\ldots x_i(t), x_i(t+1), x_i(t+2) \ldots \]
 - One year: \[\ldots x_i(t),\ldots x_i(t+4),\ldots x_i(t+8) \ldots \]
 - Consecutive years: \[\ldots x_i(t),\ldots x_i(t+12),\ldots x_i(t+24) \ldots \]
 - etc
Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics

U. Parlitza,b,*, S. Bergc, S. Luthera,b,d, A. Schirdewane, J. Kurthsf,g, N. Wesself

- Distinguishing patients suffering from congestive heart failure (CHF) from a (healthy) control group using beat-to-beat (inter-beat intervals) time series

![Graphs showing time series data for healthy subject and CHF patients](image-url)
After pre-processing the signals, classification is done in terms of the probability of occurrence of a word “i” with “D” letters, constructed with lag “l”

Fig. 4. Sketch of an ECG-signal (sequence of R-peaks) corresponding to an ordinal pattern perm(3,4,3). The time intervals x_k between every third beat ($T=3$) are ordered as $x_1 < x_3 < x_2 < x_4$.

Lag: $l=3$ (skip 3 peaks)
Letters: $D=4$
Word: $i=3$
Perm \((i,D,\text{lag})\) (the probabilities are normalized with respect to the smallest and the largest value occurring in the data set)
Code for generating the words:

```matlab
function indcs = perm_indices(ts, wl, lag) ;
    m = length(ts) - (wl - 1)*lag;
    indcs = zeros(m,1);
    for i = 1:wl - 1 ;
        st = ts(1+(i-1)*lag : m+(i-1)*lag) ;
        for j = i:wl - 1 ;
            indcs = indcs + (st > ts(1+j*lag : m+j*lag));
        end
    end
    indcs = indcs*(wl - i);
end
indcs = indcs + 1 ;
```

- **ts**: Time series
- **wl**: Length of the word (D)
- **lag**

Exercise: compute the “ordinal” bifurcation diagram of the logistic map (word probabilities vs r) for various D values, compute the PE and discuss the effect of “observational” noise.
Expect something like this

D=3

D=4
Application: decoding the spike code of a diode laser with feedback

Is there any information in the inter-dropout-interval (IDI) sequence?
"language" analysis: word probabilities

PHYSICAL REVIEW E 84, 026202 (2011)

Language organization and temporal correlations in the spiking activity of an excitable laser: Experiments and model comparison

Nicolas Rubido,¹ Jordi Tiana-Alsina,² M. C. Torrent,² Jordi Garcia-Ojalvo,² and Cristina Masoller²

Consistent with stochastic dynamics at low pumps, but signatures of determinism at higher pump currents
“language” analysis: transition probabilities

Consistent with stochastic dynamics at low pumps, but signatures of determinism at higher pump currents.
But at low pump currents: inter-dropout-intervals not fully random

Ordinal analysis can be used to quantify similarity, infer coupling and directionality from time series.

A key concept: the mutual information.
Joint entropy: \(H(X,Y) = -\sum_{i=1}^{m_X} \sum_{j=1}^{m_Y} p(x_i, y_j) \log p(x_i, y_j) \)

If X and Y are independent: \(H(X,Y) = H(X) + H(Y) \)

Mutual Information: \(MI(X,Y) = H(X) + H(Y) - H(X,Y) \)

\[
MI(X,Y) = \sum_{i=1}^{m_X} \sum_{j=1}^{m_Y} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}
\]

It reflects the reduction in uncertainty of one variable by knowing the other one.

X and Y are independent \(\iff \) \(MI(X,Y) = 0 \).

This does not hold for the cross-correlation.
Problem with cross-correlation

\[C_{i,j} = \sum_{t=1}^{N} x_i(t) x_j(t) \quad (x_i, x_j \text{ normalized to zero mean and unit standard deviation}) \]

- Illustrative example: The number of Republicans in the U.S. Senate and the sunspot number in the period 1960-2006.
Distribution of CC values

- Between the number of the Republican senators in the period 1960-2006 (24 samples) with 24-sample sets randomly drawn from the Gaussian distribution (dashed);
- between the number of the Republican senators in the period 1960-2006 (24 samples) with the 24-sample segment of the sunspot numbers randomly permutated in the temporal order (IID surrogate, dash-and-dotted);
- two 24-sample sets randomly drawn from a Gaussian distribution (solid).

Vertical line: correlation between the number of the Republican senators and the sunspot numbers for the period 1960-2006.

X and Y are independent \iff $MI(X,Y) = 0$.

OK. But: Computing probabilities from histograms give MI values that fluctuate or are systematically overestimated.

Fig. 1. Naive estimation of the mutual information for finite data. Left: The dataset consists of $N = 300$ artificially generated independent and equidistributed random numbers. The probabilities are estimated using a histogram which divides each axis into $M_X = M_Y = 10$ bins. Right: The histogram of the estimated mutual information $I(X, Y)$ obtained from 300 independent realizations.

R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002).
Numerical simulation of neuronal response to 2 different stimulus:

- **Non-informative** neuron: fires (with uniform probability) 1-10 regardless of the stimulus

- **Informative** neuron: fires (with uniform probability)
 - 1–6 spikes to stimulus 1
 - 5–10 spike to stimulus 2.
Distribution (5,000 simulations) of the MI values obtained with 20 (top) and 100 (bottom) trials per stimulus respectively. As the number of trials increases, both the information bias and the dispersion decrease. The dashed line indicates the true MI value.
Another example: monthly-averaged SAT anomalies

- MI values for real and surrogated and data.
- problem for identifying weak significant links.
Directionality: conditional mutual information

\[\text{MI}(X,Y) = H(X) + H(Y) - H(X,Y) \]

- Conditional mutual information: \[\text{CMI}(X,Y|Z) = H(X|Z) + H(Y|Z) - H(X,Y|Z) \]

- If \(X \) and \(Y \) are independent of \(Z \): \[\text{CMI}(X,Y|Z) = \text{MI}(X,Y) \]

- We want to estimate the net information concerning the future of the process \(X_1 \) that is contained within the process \(X_2 \)

\[\Delta X_1 = [...] x_1(t) - x_1(t + \tau), x_i(t + 1) - x_i(t + 1 + \tau), ... \]

\[I_{21} = \text{CMI}(X_2, \Delta X_1|X_1) \]

\[I_{21}=0: \text{there is no information in } X_2 \text{ about the future of } X_1 \]

\[\text{PCMI} = \text{Permutation conditional mutual information} \]
Example: the cardio-respiratory interaction

- $X_1 =$ phase of the heart
- $X_2 =$ phase of the respiration

\[
i(X_2 \rightarrow X_1) = \frac{1}{N} \sum_{\tau=\tau_{\text{min}}}^{\tau_{\text{max}}} I_{12}(\tau)
\]

- $N = 46$, $\tau_{\text{min}} = 5$ and $\tau_{\text{max}} = 50$

- dots: real data (averaged for each patient, using two methods for computing pdfs: 8-bin histograms and D=4 OPs)
- x: the same, surrogate data

\[\text{Y. Shiogai et al. / Physics Reports 488 (2010) 51-110}\]
Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach

A. Bahraminasab,¹ F. Ghasemi,² A. Stefanovska,¹ P. V. E. McClintock,¹ and H. Kantz³

Characterization of the causality between spike trains with permutation conditional mutual information

Zhaoihui Li,¹ Gaoxiang Ouyang,² Duan Li,¹ and Xiaoli Li²,³,*

\[I_{X\rightarrow Y}^{\delta} = I(X; Y_{\delta}|Y) = H(X|Y) + H(Y_{\delta}|Y) - H(X, Y_{\delta}|Y), \]

\[I_{Y\rightarrow X}^{\delta} = I(Y; X_{\delta}|X) = H(Y|X) + H(X_{\delta}|X) - H(Y, X_{\delta}|X) \]

\[D_{X\rightarrow Y}^{P} = \left(\frac{I_{X\rightarrow Y}^{\eta} - I_{Y\rightarrow X}^{\eta}}{I_{X\rightarrow Y}^{\eta} + I_{Y\rightarrow X}^{\eta}} \right) \]

\[D_{X\rightarrow Y}^{P} > 0 \text{ means that } S_X \text{ drives } S_Y. \]

\[D_{X\rightarrow Y}^{P} < 0 \text{ means that } S_Y \text{ drives } S_X. \]
Coupled chaotic systems: symbolic analysis to characterize the synchronization transition

\[x_i(t+1) = f(x_i(t)) + \frac{\epsilon}{b_i} \sum_{j=1}^{N} A_{ij} \left[f(x_j(t-\tau_{ij})) - f(x_i(t)) \right] \]

- With sufficiently distributed delays: steady-state synchronization.
 \[x_i(t) = x_j(t) = x_0 = f(x_0) \quad \forall i, j, t \]

- A popular synchronization quantifier:
 \[\sigma^2 = \left\langle \sum_{i=1}^{N} (x_i(t) - \langle x \rangle_s)^2 \right\rangle_t \]

- is a “global” indicator: it provides no information about the microscopic local dynamics in the nodes.

- Alternative: analyze the transition to synchronization in terms of the diversity of the symbolic “language” of the nodes.

C. Masoller, Second LINC School
In each network node, compute the transition probability from word α to word β

$$P_i(\alpha, \beta) = \frac{\sum_{t=1}^{N} n(s(t) = \alpha, s(t+1) = \beta)}{\sum_{t=1}^{N} n(s(t) = \alpha)}$$

where n is a count of the number of occurrences in node i.

Then, the “language” diversity can be quantified in terms of the heterogeneity of the probabilities among the nodes:

$$\xi^2(\alpha, \beta) = \left\langle \sum_{i=1}^{N} \left(P_i(\alpha, \beta) - \langle P_i(\alpha, \beta) \rangle_s \right)^2 \right\rangle_t$$

$$\sigma^2 = \left\langle \sum_{i=1}^{N} \left(x_i(t) - \langle x \rangle_s \right)^2 \right\rangle_t$$

This provides a quantifier for each TP ($\alpha \rightarrow \beta$).
Two clusters before synchronization when the coupling strength increases

\[\sigma^2 = \frac{1}{N} \left\langle \sum_{i=1}^{N} (x_i(t) - \langle x \rangle_t)^2 \right\rangle_t \]

\[\sigma'^2 = \frac{1}{N} \left\langle \sum_{i} (x_i - x_0)^2 \right\rangle_t \]

N=200
D=2
○: bin
□: OP

Transition probabilities in 20 randomly selected nodes

C. Masoller
Masoller & Atay, EPJD 62, 119 (2011)
No clustering before synchronization when the delay heterogeneity increases

\(N = 200 \)

\(D = 2 \)

\(o: \text{ bin} \)

\(\square: \text{ OP} \)

Transition probabilities in 20 randomly selected nodes
The coupling strength is close to synchronization.

The delay heterogeneity is close to synchronization.

Network configuration at two consecutive times and time-evolution of three randomly selected nodes.
Symbolic time series analysis
Ordinal analysis
Information theory measures
Examples
Application to climate data analysis
Ordinal pattern analysis of climatological data

- **The data**: monthly-averaged surface air temperature anomalies (SATA).

- Reanalysis data from National Center for Environmental Prediction, National Center for Atmospheric Research (NCEP-NCAR, USA).

- Regular grid of nodes covering the Earth's surface with resolution 2.5 x 2.5 (about 250 kms by 250 kms in the equator): **10,226 nodes**.

- January 1949 -- December 2006: in each node we have **696 data points** (58 years x 12 months).

- **Network representation**:

 - Area-weighted connectivity: plot of the % of the Earth each node is connected to (no information about the connections).

 - Connections of one node with all the other nodes: plot of cross-correlation (CC) or MI values.
Visual inspection of time series (monthly averaged SAT anomalies)
Similarity measures used to construct climate networks

- **CC:** computed from SATA values

- **MI:** computed from histogram of SATA values.

- **MI:** computed from ordinal patterns \((D=4, D=5)\) lag=1 allows to consider consecutive months; lag=4 allows to consider 1 year period, lag=12 allows to consider consecutive years).

- **MI:** also computed from binary representations (SATA, one threshold at \(x_{th}=0\)), allows to consider words with more letters.
An example of cross correlation plot

\[C_{i,j}(\tau) = \sum_{t=1}^{N} x_i(t + \tau) x_j(t) \]
In what follows: CC/MI computed with zero-lag. For lag-times effects: Giulio’s presentation
Simplest option: consider that links are statistically significant if similarity values (CC/MI) are larger than those obtained with surrogated shuffled data.

PDF computed with 10,226x10,226 values. Similar results when using a local threshold for each node (from PDFs computed with 10,226 values).
Climate network constructed with CC and keeping all the significant links

AWC

$\tau = 0 \quad \rho = 0.207$

CC values

$\tau = 0 \quad \rho = 0.207$
Climate network constructed with CC

AWC (all significant)

\[\tau = 0 \quad \rho = 0.207 \]

10% strongest links

\[\tau = 0.215 \quad \rho = 0.103 \]
MI (histogram of anomaly values) and keeping all the significant links

\[\tau = 0 \quad \rho = 0.074 \]

AWC

MI values

\[\tau = 0 \quad \rho = 0.074 \]
Comparison CC – MI at 10% density

AWC (CC)

\[\tau = 0.215 \quad \rho = 0.103 \]

AWC (MI)

\[\tau = 0.047 \quad \rho = 0.1 \]
MI (OPs 4 years) and keeping all the significant links

AWC

\[\tau = 0 \quad \rho = 0.042 \]

MI values

\[\tau = 0 \quad \rho = 0.042 \]

Barreiro, Martí and Masoller, Chaos 21, 013101 (2011)
MI (OPs 4 months) and keeping all the significant links

AWC

\(\tau = 0 \quad \rho = 0.023 \)

MI values

\(\tau = 0 \quad \rho = 0.023 \)
The results are robust when a more tolerant threshold is used

\[\tau = \mu + 3\sigma \]

Networks with higher link density are obtained, which display a richer pattern of teleconections: Ignacio’s presentation.

The link significance should be carefully examined in order to avoid disregarding weak but significant links.
MI (BINARY consecutive years)

\[D = 5 \]
\[2^5 = 32 \]

\[D = 6 \]
\[2^6 = 64 \]
1% and 0.1% connectivity: very different networks.

Stronger links (0.1%): the network is almost the same for D=5 and D=6.
MI (BINARY): influence of the pattern time-interval for fixed the length (D=6) and network density (0.1%)
Problem: visualization of the network via the AWC

\(\tau_{ij} \) random in [0,11]

\[
C_{i,j}(\tau) = \sum_{t=1}^{N} x_i(t + \tau_{ij}) x_j(t)
\]

Zero-lag

\[
C_{i,j}(\tau) = \sum_{t=1}^{N} x_i(t) x_j(t)
\]
CC of the node with largest AWC ("hub")

\[\tau_{ij} \text{ random in } [0,11] \]

Zero lag

10%
Considering the strongest links (1%)

\[\tau_{ij} \text{ random in } [0,11] \]

\[\tau = 0.35 \quad \rho = 0.01 \]

\[\tau = 0.63 \quad \rho = 0.01 \]
Even stronger (0.1%)
Summary and future work

- Symbolic analysis is a powerful tool for the analysis of data from complex systems such as the climate.

- The success of the method is based on an appropriate symbolic representation that fully characterizes the diversity of patterns present in the time-series.

- Allows to study processes with different time scales.

- Problems identified: i) significant weak links might be hidden by noise; ii) because the network is embedded in a regular grid, the stronger links are mainly local connections and iii) the AWC does not reveal the rich underlying pattern of weak non-local connections.

- Future work: detection of link directionality and relations among different variables (construction of interacting networks).

THANK YOU FOR YOUR ATTENTION