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▪ Anomaly: a data point that cannot be explained given current 

knowledge of the process that generates the data.

▪ Outlier: a “legitimate” data point that is far from the center of 

the distribution that characterizes the process.

▪ Novelty detection: “new” event/data not seen before.

Strange observation/data: an outlier or an anomaly/artifact?
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▪ Point anomalies: a data point that is anomalous with respect to 

the rest of the data.

▪ Contextual anomalies: a data point that is anomalous in a 

specific context.

▪ Collective anomalies: a set of data points that are not anomalies 

by themselves, but their collective occurrence is anomalous.

Types
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V. Chandola et al., ACM Comput. Surveys 41, 15 (2009)



Removing outliers / anomalies from the training data 

improves the performance of a machine learning algorithm.

“Practical” definition:
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Feature vectors of items i and j:

Euclidian distance:

cristina.masoller@upc.edu        @cristinamasoll1

We consider a dataset of high-dimensional items where 

a distance can be defined between pairs of items.

Fully 

connected 

network

The weights 

of the links 

are the 

distances
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First method: Outlier detection using percolation

Outlier score of an item = order in which the item 

disconnects from the giant component.  Parameter free.

Sequentially remove links with longest distances



▪ Main idea: how well or how poorly an element fits in the learned 

manifold.

Second method: nonlinear dimensionality reduction
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IsoMap, Tenenbaum et al., Science 290, 2319 (2000).

P. Amil, N. Almeida and C. Masoller, Front. Phys. 7, 194 (2019).
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▪ Apply IsoMap to the distance matrix Dij to obtain 

− a new set of features 

− a new distance matrix in the geodesic space, DG
ij

▪ With the new features, recalculate the distance matrix D’ij

▪ For each element, calculate correlation,  between DG
ij and D’ij

▪ Outlier score: OSi = 1-i
2

▪ Two parameters (integers):

− Dimension of reduced space

− # of geodesic neighbors  

Steps
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Note: we don’t use the features returned 

by IsoMap to assign outlier scores
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▪ Distance to center of mass (d2CM): an outlier score is assigned 

according to the distance of an element to the center of mass.

▪ Ramaswamy: an outlier score is assigned according to the 

distance of an element to its kth nearest neighbor.

▪ One Class Support Vector Machine (OCSVM): uses the scalar 

product to define a function that returns +1 in the region where 

normal elements are located and −1 elsewhere.

Comparison with other distance-based outlier mining methods
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Ramaswamy et al., Efficient algorithms for mining outliers from large data sets. 

ACM Sigmod Record (Vol. 29, No. 2, pp. 427-438, 2000).

Schölkopf et al., Estimating the support of a high-dimensional distribution.

Neural computation13, 1443-1471, 2001.
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We added to some random images a square with gray-scale 

pixels whose color distribution is the same as that of the image.

Face database
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http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Performance quantification:
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P. Amil, N. Almeida and C. Masoller, Front. Phys. 7, 194 (2019).

Average precision: area under the Precision-Recall curve, 

TP/(TP+FP) vs TP

It does not depend on the number of true negatives.



ISOMAP precision can be improved by selecting the 

parameters
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square size: 30 pixels



How about other types high-dimensional of items?
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P. Amil, N. Almeida and C. Masoller, Front. Phys. 7, 194 (2019).

We analyzed a database of Credit Card Transactions (some 

labeled as frauds); each transaction has 28 features from PCA.

https://www.kaggle.com/mlg-ulb/creditcardfraud

4,000 transactions

100 labeled as 

frauds.

2000 for training 

and 2000 for 

testing.
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P. Amil, N. Almeida and C. Masoller, Front. Phys. 7, 194 (2019).

Analysis of 7 sets of 4000 credit transactions, chosen without

considering the amount of the transaction.

In each set: 3900 regular and 100 frauds

https://www.kaggle.com/mlg-ulb/creditcardfraud

(reminder) Average 

precision: area under the 

Precision-Recall curve, 

TP/(TP+FP) vs TP



Summary of results
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OCT images

Credit card

transactions

Face images
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For a database of 1,000 elements with 30 dimensions, 

run on Matlab on an Intel i7-7700HQ laptop:

Distance to center of mass 0.01 s

Ramaswamy 0.04 s

One Class Support Vector Machine        0.2 s

Percolation 6 s 

IsoMap 18 s

Can we do better?

The methods’ performance depends on the data.

How do they compare in terms of execution time?
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Another distance-based way to mine anomalies / outliers
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Feature vectors of items i and j

1. Euclidean distance:

2. Jensen-Shannon divergence: distance between the

distributions of distances of items “j"  and “k”: Pj={djl} & Qk={dkl}   

In both cases: outlier score 

is the sum of the weights of 

the links of the node.

Djk=

First case: the weights are the 

distances between feature vectors.

Second case: weights are distances 

between probability distributions.
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OS1, OS2: Outlier score defined by the sum of distances

OP1, OP2: Outlier score defined by the percolation order



Results
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1000 credit card transactions: 10% fraud (similar with 5% fraud)

A. S. O. Toledo et. al, Outlier mining in high-dimensional data using the Jensen-Shannon 

divergence and graph structure analysis, J. of Phys: Complexity 3, 045011 (2022). 

100              1000            10000

Number of transactions analyzed
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Calculation 

of JS 

distances

OP1: Percolation, Euclidian distances

OS1: Sum of Euclidian distances
OP2: Percolation, JS distances

OS2: Sum of JS distances



Average precision for different sizes (90% normal 

transactions, 10% frauds)
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(Reminder) 

Average precision: area under the Precision-Recall curve, TP/(TP+FP) vs TP



Take home messages
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The outlier mining methods proposed require to define a 

meaningful distance between the elements of a database 

that have associated high-dimensional “feature” vectors.

Parameter free.

The database can not be too large because the 

execution time grows at least as NxN with the size N of 

the database (but linearly with the number of features).

Can be used to mine outliers in time-series data, two-

dimensional data (images), unstructured data, etc. 



Pablo Amil & Alex ToledoThe doers:
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Thank you for your attention !
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