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Presentacion

 Professor of Physics, Universitat Politecnica de Catalunya.

 Originally from Montevideo, Uruguay.

 PhD in physics (nonlinear laser dynamics, Bryn Mawr College, USA).

 Research group: Dynamics, Nonlinear Optics and Lasers



UPC: one of the largest technical universities in Spain
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Where are we? UPC Campus Terrassa
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Laser lab in Gaia Building, 

UPC Campus Terrassa



Complex

systems

Data analysis

Applications
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‒ Laser dynamics

‒ Neuronal dynamics

‒ Complex networks

‒ Data analysis

climate and biomedical data

tipping points, extreme events

Research lines



Lasers, neurons, climate, complex systems?
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Ocean rogue wave (sea surface

elevation in meters)

Polarization switching 

Laser & neuronal spikes

Extreme optical pulse (optical rogue wave)
Laser turn-on



Methods of time series analysis {x1, x2, … xN}

 Univariate analysis

 Bivariate analysis

 Multivariate analysis

‒ Complex networks 



1) “Univariate” time-series 

analysis tool: Hilbert analysis

(for oscillatory time series)



x

HT[x]

x

y=HT[x]

The Hilbert Transform (HT)

Surface air temperature (SAT)

HT[sin(t)]=cos(t)

(t) = d/dt



Example
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A word of warning: only if x(t) is a “narrow-band” signal then 

a(t) and (t) = d/dt have clear physical meaning

‒ a(t) is the envelope of x(t)

‒ (t) is the main frequency in the Fourier spectrum



Climatic time series are NOT narrow-band.PROBLEM !

An ‘‘artist’s representation’’ of the power 

spectrum of climate variability (M. Ghil 2002).



Solution ?

 Isolate a narrow frequency band (usual solution for EEG 

signals).

 However, I will show that HT directly applied to raw surface 

air temperature (SAT) returns meaningful results.

SAT data

 Spatial resolution 2.50 x 2.50  10226 time series

 Daily resolution 1979 – 2016  13700 data points



Oscillatory time series of 13700 data points in each “node”

(more than 10000 nodes) 

Credit: G. Tirabassi



Where does the data come from?

 European Centre for Medium-Range Weather Forecasts 

(ECMWF). 

 Freely available.

 Reanalysis = general atmospheric circulation model feed with 

empirical data, where and when available (data assimilation).

ECMWF datacenter, 

Reading, UK, March 2022

Meeting of EU project CAFE



Which information carries the Hilbert phase? 

In color code the cos() averaged over all July 1 in the period 

1979 – 2016.

http://www.fisica.edu.uy/~cris/videos/map_typical.mp4
http://www.fisica.edu.uy/~cris/videos/map_typical.mp4
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ENSO (El niño / southern oscillation)



El Niño period

(October 2015)

La Niña period

(Octubre 2011)



Hilbert phase vs day of the year (1979 – 2016)

D. A. Zappala, M. Barreiro, C. Masoller, 

Chaos 29, 051101 (2019).

in a continental 

“regular” region / node

And in an irregular region?



1) Can we use the Hilbert 

amplitude, phase, frequency, 

to identify and quantify 

regional “climate change”?

2) Can we identify and quantify 

synchronized oscillations?

Questions?
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Relative decadal variations in each region (“node”) 

Relative variation is considered significant if: 
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100 “surrogates” 

G. Lancaster et al, “Surrogate data for hypothesis testing of physical systems”, Physics Reports 

748, 1 (2018).



D. A. Zappala, M. Barreiro, C. Masoller, Earth Syst. Dynamics 9, 383 (2018)

Relative decadal variations 



 Decrease of precipitation: the solar radiation that is not 

used for evaporation is used to heat the ground.

 Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.

Artic

Amazonas



Quantifying synchronization of air temperature oscillations

Kuramoto order 

parameter

North Hemisphere South H



2) “Bivariate” time-series 

analysis tool: pseudo 

Transfer Entropy (pTE)

• For time series with a distribution of 

values that is approximately Gaussian

• It provides “causal” information 

(whether or not knowledge of Y 

improves the forecast of X)



C. W. J. Granger

past of 𝑋1
Residual 

error

𝑋2 → 𝑋1

Hypothesis: X1 and X2 can be described by 

autoregressive linear models

If ൻ ۧ𝐸′
1(𝑡) < ۦ ۧ𝐸1(𝑡)

Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 37, 424–438 (1969). 

Granger Causality

𝑋1 𝑡 = ෍

𝑗=1

𝑝
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past of 𝑋1 past of 𝑋2
Residual 

error
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Software: Fulton, C, https://github.com/statsmodels/statsmodel (2020)



Entropy (disorder) and information

https://imgur.com/gallery/Otg97

LOW entropy HIGH informationHIGH entropy LOW information



 MI is calculated from probability distributions, p(X), p(Y) 

and p(X,Y)

 If X, Y are independent, MI = 0, else MI >0

 For Gaussian distributions: MI = -1/2 log(1-2) 

where  is the cross-correlation coefficient.

Mutual Information (MI)
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Quantifies the reduction in 

uncertainty of one variable by 

knowing the other variable.

X

Y



 TE: is the Conditional Mutual information, given the 

“past” of one of the variables.

Transfer Entropy (TE) and Directionality Index (DI)
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TE (x,y) = MI (x, y|x)

TE (y,x) = MI (y, x|y)

 MI (x,y) = MI (y,x)  but TE (x,y)  TE(y,x)

 Directionality Index:  TE(x,y)-TE(y,x)



Analysis of surface air temperature anomalies: 

Mutual Information
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J. I. Deza, M. Barreiro, and C. Masoller, “Assessing the direction of climate interactions by 

means of complex networks and information theoretic tools”, Chaos 25, 033105 (2015).



Analysis of surface air temperature anomalies: 

Directionality Index
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J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).



Analysis of surface air temperature anomalies: 

Directionality Index
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J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).



Problem: Transfer Entropy is computationally demanding
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“simple” solution: use the expression that is valid 

for Gaussian distributions [ MI = -1/2 log(1-2) ] 

Does this work? Check it out:

https://doi.org/10.1038/s41598-021-87818-3



Y    X

Y    X

Y    X

Ç√

𝑥𝑡 = (0.01 + 0.5 𝑥𝑡−1
2 )0.5+ 𝐸1𝑡 𝑦𝑡 = 0.5 𝑦𝑡−1 + 𝐸2𝑡

𝑥𝑡 = 0.6 𝑥𝑡−1 + 0.5 𝑦𝑡−1 + 𝐸1𝑡 𝑦𝑡 = 0.5 𝑦𝑡−1 + 𝐸2𝑡

𝑥𝑡 = 0.15 𝑥𝑡−1 + 0.7 𝑦𝑡−1 + 𝐸1𝑡

𝑦𝑡 = 0.1 𝑦𝑡−1 + 0.8 𝑥𝑡−1 + 𝐸2𝑡

Data Generating Processes

Data Generating Processes and Performance Quantification

Power: True Positives

Size: False Positives



Time-shifted surrogates: “cheap” option for causality testing
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Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in 

real data: A case study on electroencephalographic signals, Phys. Rev. E, 65 (4) (2002)
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Data Generating Processes

Results









Y    X

Y    X

Y    X

Data Generating Processes

Comparison with Granger Causality and Transfer Entropy



a b a ba b

NINO3.4 AIR

Yearly 

sampled (152)

Monthly 

sampled (1836)

pTE

GC

TE

0.04 s

NINO3.4 AIR
0.5 s

NINO3.4 AIR NINO3.4 AIR
0.4 s 0.9 s

NINO3.4 AIR NINO3.4 AIR
1 s 68 s

IAAF
T

40/9
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Application to real data  NINO3.4  All India Rainfall



For two time-series of 500 data points (1 data point 

per month, 40 years):

TE:112 ms but pTE: 4 ms

How much time can we save?
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8000 grid points (high resolution)

 64 x 106 pairs

 829 days (TE) vs. 29 days (pTE).

(without “surrogate” analysis)

But, there is a price to pay, no “free lunch”.

https://github.com/riccardosilini/pTE



3) “Multivariate” time-series 

analysis

Cambridge University Press 2019



Courtesy of  Henk Dijkstra (Ultrech University)



Complex network representation of the climate system

J. F. Donges et al, Chaos 25, 113101 (2015).

Back to the climate 

system: interpretation 

(currents, winds, etc.)

More than 

10000 

nodes.

Daily 

resolution: 

more than 

13000 data 

points in 

each time 

series



Brain network Climate network
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“Degree”

(number of links)



In the analysis of climate data, depending on temporal 

resolution, lags need to be taken into account

43
J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896, 1 (2021).



{…xi, xi+1, xi+2, …}

How can three data points (let’s say 2, 5, 7) be ordered?

Ordinal analysis provides a nonlinear way to consider lags

Bandt and Pompe: Phys. Rev. Lett. 2002

{…2, 5, 7…}

{…2, 7, 5…}

{…5, 2, 7…}

{…5, 7, 2…}

{…7, 2, 5 …}

{…7, 5, 2…}



How many possibilities for ordering four data points ? 

{…xi, xi+1, xi+2, xi+3, …} 

Python and Matlab codes for computing the ordinal pattern index available at: 

U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012) 



Which is the “message” “encoded” in the red dots?

s={A, B, F, C}



Given two time series, X and Y, we can compute each 

sequence of “ordinal” patterns, sx and sy, and then, their 

mutual “ordinal” information.



Intra-season 

102

Intra-annual 

012

Inter-annual 

120
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Ordinal analysis allows to study different time scales



Ordinal analysis detects teleconnections with different 

“time-scales” 
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Longer 

time-scale 



increased 

connectivity

Degree Links of a node in El Niño area



 Goal: to construct a network in 

which regions with similar climate 

(e.g., continental) are in the same 

“community”.

 Problem: not possible with the 

“usual” correlation-based method 

to construct the network because 

NH and SH are only indirectly 

connected.
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Climate “communities”

How to identify regions with similar climate?



Results
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Ordinal Network
Correlation network

(only the largest 16 communities)

G. Tirabassi and C. Masoller, “Unravelling the community structure of the climate 

system by using lags and symbolic time-series analysis”, Sci. Rep. 6, 29804 (2016).



Summarizing



 Many measures are available to uncover inter-relationships 

in datasets.

 Each dataset has its own peculiarities.

 Different measures can uncover different properties.

 Hidden variables, hidden “nodes”, common “drivers” can 

make impossible to understand the network structure.

 Network science: many applications and challenges!

Take home messages



“Extra bonus”: application of network science to fundus 

image analysis

P. Amil et al., PLoS ONE 14, e0220132 (2019).



Ignacio Deza Giulio Tirabassi Dario Zappala Riccardo Silini Marcelo Barreiro
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