REDES Y CLIMA (y métodos de análisis de datos)

Cristina Masoller Departamento de Fisica Universitat Politecnica de Catalunya

Slides: http://www.fisica.edu.uy/~cris/enredando.pdf

Campus d'Excel·lència Internacional

🛛 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Presentacion

- Professor of Physics, Universitat Politecnica de Catalunya.
- Originally from Montevideo, Uruguay.
- PhD in physics (nonlinear laser dynamics, Bryn Mawr College, USA).
- Research group: Dynamics, Nonlinear Optics and Lasers

UPC: one of the largest technical universities in Spain

○ A https://www.upc.edu/ca								
UNIVE DE CA BARCE	RSITAT POLITÈCNICA Falunya Jonatech	Q Informació	Q Informació per a _マ COVID-19 Seu Electrònica ıª Contac GRAUS ⊽ MÀSTERS ⊽ DOCTORATS					
La UPC avui					Més xifres			
28.66 estudian	9 3.459 PDI	2.061 PAS	66 graus	81 màsters	45 programes de doctorat			
18 centres doc	ents programes de formació permanent	e patents el darrer any	317 M pressupost 2022	55 M ingressos per R+D+I (2020)	69.442 Alumni			

Where are we? UPC Campus Terrassa

Research lines

- Laser dynamics
- Neuronal dynamics
- Complex networks
- Data analysis
 climate and biomedical data
 tipping points, extreme events

Data analysis

Complex systems

Applications

📩 cristina.masoller@upc.edu 🈏 @cristinamasoll1

Lasers, neurons, climate, complex systems?

Methods of time series analysis

 $\{X_1, X_2, \dots, X_N\}$

Jan-Dec mean monthly GISS global temperature (giss al gl m mean1 anom ave12)

Univariate analysis

Bivariate analysis

- Multivariate analysis
 - Complex networks

1) "Univariate" time-series analysis tool: Hilbert analysis

(for oscillatory time series)

The Hilbert Transform (HT)

📩 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Example

$$x(t) = e^{-\alpha t} \cos\left[\left(1 + e^{-2\alpha t}\right)\omega_0 t\right].$$

<u>A word of warning</u>: only if x(t) is a "narrow-band" signal then a(t) and $\omega(t) = d\varphi/dt$ have clear physical meaning

- -a(t) is the envelope of x(t)
- $-\omega(t)$ is the main frequency in the Fourier spectrum

PROBLEM ! Climatic time series are NOT narrow-band.

An "artist's representation" of the power spectrum of climate variability (M. Ghil 2002).

📩 cristina.masoller@upc.edu 🏻 🈏 @cristinamasoll1

Solution ?

- Isolate a narrow frequency band (usual solution for EEG signals).
- However, I will show that HT directly applied to <u>raw surface</u> <u>air temperature</u> (SAT) returns meaningful results.

SAT data

- Spatial resolution $2.5^{\circ} \times 2.5^{\circ} \Rightarrow 10226$ time series
- Daily resolution $1979 2016 \Rightarrow 13700$ data points

Oscillatory time series of 13700 data points in each "node" (more than 10000 nodes)

Credit: G. Tirabassi

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Where does the data come from?

- European Centre for Medium-Range Weather Forecasts (ECMWF).
- Freely available.
- <u>Reanalysis</u> = general atmospheric circulation model feed with empirical data, where and when available (data assimilation).

ECMWF datacenter, Reading, UK, March 2022 Meeting of EU project CAFE

📩 cristina.masoller@upc.edu 🏼 🈏 @cristinamasoll1

Which information carries the <u>Hilbert phase</u>? In color code the $cos(\phi)$ averaged over all **July 1** in the period 1979 – 2016.

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

ENSO (El niño / southern oscillation)

Sea surface temperature anomaly, Oct 11-Nov 7, 2015

El Niño period (October 2015)

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Hilbert phase vs day of the year (1979 – 2016)

And in an irregular region?

D. A. Zappala, M. Barreiro, C. Masoller, Chaos 29, 051101 (2019).

📩 cristina.masoller@upc.edu 🏼 🈏 @cristinamasoll1

in a continental "regular" region / node

Questions?

- Can we use the Hilbert amplitude, phase, frequency, to identify and quantify regional "climate change"?
- 2) Can we identify and quantify synchronized oscillations?

Relative decadal variations in each region ("node")

$$\Delta a = \left\langle a \right\rangle_{2016-2007} - \left\langle a \right\rangle_{1988-1979}$$
$$\frac{\Delta a}{\left\langle a \right\rangle_{2016-1979}}$$

Relative variation is considered **significant** if:

$$\frac{\Delta a}{\langle a \rangle} \ge \langle . \rangle_{s} + 2\sigma_{s} \quad \text{or} \quad \frac{\Delta a}{\langle a \rangle} \le \langle . \rangle_{s} - 2\sigma_{s}$$
100 "surrogates"

G. Lancaster et al, "Surrogate data for hypothesis testing of physical systems", Physics Reports 748, 1 (2018).

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Relative decadal variations

D. A. Zappala, M. Barreiro, C. Masoller, Earth Syst. Dynamics 9, 383 (2018)

🛛 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

- Decrease of precipitation: the solar radiation that is not used for evaporation is used to heat the ground.
- Melting of sea ice: during winter the air temperature is mitigated by the sea and tends to be more moderated.

Quantifying synchronization of air temperature oscillations

📩 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

2) "Bivariate" time-series analysis tool: pseudo Transfer Entropy (pTE)

0	R	9
\square	G	J
W	J	J

- For time series with a distribution of values that is approximately Gaussian
- It provides "causal" information (whether or not knowledge of Y improves the forecast of X)

Granger Causality

Hypothesis: X_1 and X_2 can be described by autoregressive linear models

past of
$$X_1$$

 $X_1(t) = \sum_{j=1}^p A_{11,j} X_1(t-j)$
Residual
error
 $+ E_1(t)$

$$X_{1}(t) = \sum_{j=1}^{p} A_{11,j} X_{1}(t-j) + \sum_{j=1}^{p} A_{12,j} X_{2}(t-j) + \frac{\text{Residual}}{E'_{1}(t)}$$

 $| \mathsf{f} \langle E'_1(t) \rangle < \langle E_1(t) \rangle \quad \Longrightarrow \quad X_2 \ \to \ X_1 \\$

Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).

Software: Fulton, C, https://github.com/statsmodels/statsmodel (2020)

📩 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Entropy (disorder) and information

HIGH entropy LOW information

LOW entropy HIGH information

https://imgur.com/gallery/Otg97

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Mutual Information (MI)

- MI is calculated from probability distributions, p(X), p(Y) and p(X,Y)
- If X, Y are independent, MI = 0, else MI >0
- For Gaussian distributions: $MI = -1/2 \log(1-\rho^2)$ where ρ is the cross-correlation coefficient.

K. Hlaváčková-Schindler et al. / Physics Reports 441 (2007) 1–46

🔜 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Transfer Entropy (TE) and Directionality Index (DI)

TE: is the Conditional Mutual information, given the "past" of one of the variables.

TE (x,y) = MI (x, y|x_{τ})

TE (y,x) = MI (y, $x|y_{\tau})$

- MI (x,y) = MI (y,x) but TE $(x,y) \neq TE(y,x)$
- Directionality Index: TE(x,y)-TE(y,x)

K. Hlaváčková-Schindler et al. / Physics Reports 441 (2007) 1-46

🔄 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Analysis of surface air temperature anomalies: Mutual Information

J. I. Deza, M. Barreiro, and C. Masoller, "Assessing the direction of climate interactions by means of complex networks and information theoretic tools", Chaos 25, 033105 (2015).

🛛 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Analysis of surface air temperature anomalies: Directionality Index

J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Analysis of surface air temperature anomalies: Directionality Index

J. I. Deza, M. Barreiro, and C. Masoller, Chaos 25, 033105 (2015).

🛛 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Problem: Transfer Entropy is computationally demanding

"simple" solution: use the expression that is valid for Gaussian distributions [$MI = -1/2 \log(1-\rho^2)$]

Does this work? Check it out:

scientific reports

OPEN Fast and effective pseudo transfer entropy for bivariate data-driven causal inference

Riccardo Silini[⊠] & Cristina Masoller

https://doi.org/10.1038/s41598-021-87818-3

Check for updates

Data Generating Processes and Performance Quantification

 $x_t = (0.01 + 0.5 x_{t-1}^2)^{0.5} + E_{1t}$ $y_t = 0.5 y_{t-1} + E_{2t}$

 $x_t = 0.15 x_{t-1} + 0.7 y_{t-1} + E_{1t}$ $y_t = 0.1 y_{t-1} + 0.8 x_{t-1} + E_{2t}$

🗟 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Time-shifted surrogates: "cheap" option for causality testing

Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. *Performance of different synchronization measures in real data: A case study on electroencephalographic signals,* Phys. Rev. E, 65 (4) (2002)

🛛 cristina.masoller@upc.edu 🏾 🈏 @cristinamasoll1

Results

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Comparison with Granger Causality and Transfer Entropy

		Model	pTE		GC		TE		DI		
	Wibdei	$Y \rightarrow X$	$X \to Y$	$\boldsymbol{Y} \to \boldsymbol{X}$	$X \to Y$	$\boldsymbol{Y} \to \boldsymbol{X}$	$X \to Y$	pTE	GC	TE	
	ſ	Мо	3.8	3.9	5.1	5.0	4.4	4.4	-0.01	0.01	0.00
Y X	┥	Mı	2.3	2.6	3.3	3.1	100	100	-0.06	0.03	0.00
		M2	4.2	4.7	5.5	5.9	4.7	4.9	-0.06	-0.04	-0.02
		M3	100	4.5	100	4.8	70.2	5.6	0.91	0.91	0.85
Y→X		M4	80.7	3.8	84.2	4.9	96.0	4.7	0.91	0.89	0.91
		M5	100	2.2	100	3.1	100	3.8	0.96	0.94	0.93
		M6	100	1.8	100	2.8	100	4.3	0.96	0.95	0.92
		M7	100	2.8	100	3.4	100	4.0	0.95	0.93	0.92
	1	M8	100	4.5	100	5.6	100	100	0.91	0.89	0.00
		M9	100	0.1	100	0.1	100	100	1.00	1.00	0.00
		M10	62.6	3.1	67.3	4.3	12.2	4.5	0.91	0.88	0.46
		M11	46.1	43.1	53.1	49.8	37.8	45.0	0.03	0.03	-0.09
	L	M12	99.9	1.0	100	0.9	100	0	1.0	1.0	1.0
Y≒X	Г	M13	100	100	100	100	100	100	0.00	0.00	0.00
	٦	M14	100	100	100	100	100	100	0.00	0.00	0.00

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Application to real data NINO3.4 $\leftarrow \rightarrow$ All India Rainfall

Monthly sampled (1836)

 $NINO3.4 \rightarrow AIR$ 0.04 s 0.4 s $NINO3.4 \hookrightarrow AIR$ $NINO3.4 \hookrightarrow AIR$ 1 s

NINO3.4 \leftarrow AIR 0.5 s NINO3.4 \leftarrow AIR 0.9 s NINO3.4 \leftarrow AIR 40/9 3 68 s

How much time can we save?

For two time-series of 500 data points (1 data point per month, 40 years): TE:**112 ms** but pTE: **4 ms**

8000 grid points (high resolution) \Rightarrow 64 x 10⁶ pairs

 \Rightarrow 829 days (TE) vs. 29 days (pTE).

(without "surrogate" analysis)

But, there is a price to pay, no "free lunch".

https://github.com/riccardosilini/pTE

📩 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

38

3) "Multivariate" time-series analysis

Cambridge University Press 2019

The Climate System

Courtesy of Henk Dijkstra (Ultrech University)

🔄 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Complex network representation of the climate system

Back to the climate system: interpretation (currents, winds, etc.)

More than 10000 nodes.

J. F. Donges et al, Chaos 25, 113101 (2015).

Daily resolution: more than 13000 data points in each time series

📩 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Brain network

"Degree" (number of links)

In the analysis of climate data, depending on temporal resolution, lags need to be taken into account

Fig. 6. Typical weighted and directed link in a Pearson Correlation Climate Network. (a) Node *i* is located on the Southwest Atlantic and node *j* is in the South American continent. (b) The near surface daily air temperature anomalies for the period [2014,2018]. (c) The cross-correlation function between the time series shown in (b). The direction of this link is from *j* to *i* with weight $W_{i,i}^+ = 5.71$.

43

J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896, 1 (2021).

🔄 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

Ordinal analysis provides a nonlinear way to consider lags

$$\{\dots X_{i}, X_{i+1}, X_{i+2}, \dots\}$$

How can three data points (let's say 2, 5, 7) be ordered?

Bandt and Pompe: Phys. Rev. Lett. 2002

🔄 cristina.masoller@upc.edu 🛛 🤟 @cristinamasoll1

How many possibilities for ordering four data points ? $\{...x_i, x_{i+1}, x_{i+2}, x_{i+3}, ...\}$

Python and Matlab codes for computing the ordinal pattern index available at: U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012)

🔜 cristina.masoller@upc.edu 🛛 🈏 @cristinamasoll1

Which is the "message" "encoded" in the red dots?

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

Given two time series, X and Y, we can compute each sequence of "ordinal" patterns, s_x and s_y , and then, their mutual "ordinal" information.

Ordinal analysis allows to study different time scales

Ordinal analysis detects teleconnections with different "time-scales"

90E 135E 180E 135W 90W 45W

45E

Degree

Longer time-scale increased connectivity

cristina.masoller@upc.edu 🤰@cristinamasoll1

Climate "communities"

How to identify regions with similar climate?

- Goal: to construct a network in which regions with similar climate (e.g., continental) are in the same "community".
- Problem: not possible with the "usual" correlation-based method to construct the network because NH and SH are only indirectly connected.

📩 cristina.masoller@upc.edu 👌

@cristinamasoll1

Results

Ordinal Network

Correlation network (only the largest 16 communities)

G. Tirabassi and C. Masoller, "Unravelling the community structure of the climate system by using lags and symbolic time-series analysis", Sci. Rep. 6, 29804 (2016).

Summarizing

Take home messages

- Many measures are available to uncover inter-relationships in datasets.
- Each dataset has its own peculiarities.
- Different measures can uncover different properties.
- Hidden variables, hidden "nodes", common "drivers" can make impossible to understand the network structure.
- Network science: many applications and challenges!

"Extra bonus": application of network science to fundus image analysis

📩 cristina.masoller@upc.edu 🛛 😏 @cristinamasoll1

THANKS TO

Ignacio Deza

Giulio Tirabassi

Dario Zappala Riccardo Silini

Marcelo Barreiro

📩 cristina.masoller@upc.edu 🤰 @cristinamasoll1

Thank you for your attention

Slides: http://www.fisica.edu.uy/~cris/enredando.pdf

- J. I. Deza, M. Barreiro, C. Masoller, Chaos 25, 033105 (2015)
- G. Tirabassi, C. Masoller, Sci. Rep. 6, 29804 (2016)
- D. A. Zappala, M. Barreiro, C. Masoller, Earth Syst. Dynamics 9, 383 (2018)
- D. A. Zappala, M. Barreiro, C. Masoller, Chaos 29, 051101 (2019)
- R. Silini, C. Masoller, Scientific Reports 11 8423 (2021)
- Dijkstra, Barreiro, Hernandez-Garcia Masoller, Networks in Climate, Cambridge University Press (2019)

Agencia de Gestló d'Ajuts Universitaris i de Recerca

cristina.masoller@upc.edu

@cristinamasoll1