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Presentation

• Originally from Montevideo, Uruguay

• PhD in physics (lasers, Bryn Mawr College, USA)

• Since 2004 @ Universitat Politecnica de Catalunya.

• Professor in the Physics Department, research group 

on Dynamics, Nonlinear Optics and Lasers.



Where are we?



Nonlinear

dynamics

Data analysis

Applications
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 Nonlinear and stochastic 

phenomena 

‒ laser dynamics

‒ neuronal dynamics

‒ complex networks

‒ data analysis (climate, 

biomedical signals)

What do we study?



Lasers, neurons, climate, complex systems?
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 Lasers allow us to study in a controlled way phenomena that 

occur in diverse complex systems.

 Laser experiments allow to generate sufficient data to test new 

methods of data analysis for prediction, classification, etc.

Ocean rogue wave (sea surface

elevation in meters)

Extreme events (optical rogue waves)

Abrupt switching

Laser & neuronal spikes
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In complex systems dynamical transitions 

are difficult to identify and to characterize. 

Example: laser with time delayed optical feedback

Time

Laser intensity



How complex optical signals emerge from noise
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Video: how complex optical signals emerge from noisy 

fluctuations

https://youtu.be/nltBQG_IIWQ


Can differences be quantified? With what reliability?

Time

Laser output intensity

Low current (noise?)

High current (chaos?)



Are weather extremes becoming more frequent?

more extreme?

Credit: Richard Williams, North Wales, UK

Physics Today, Sep. 2017

ECMWF 



Surface air temperature in two different regions
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Can changes be quantified? With what reliability?



Courtesy of  Henk Dijkstra (Ultrech University)

The Climate System is a “complex system”



Thanks to advances in computer science, global climate 

models allow for good weather forecasts
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Nature, February 2010
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Nature, February 2010



But global climate models are not very useful for 

improving our understanding
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• But “over-simplified models” do not 

always provide useful information. 

In early summer, 1996, milk production at a 

Wisconsin dairy farm was very low. The farmer 

wrote to the state university, asking help from 

academia. A multidisciplinary team of professors 

was assembled, headed by a theoretical physicist, 

and two weeks of intensive on-site investigation 

took place. A few weeks later, a physicist phoned 

the farmer, "I've got the answer," he said, "But it 

only works when you consider spherical cows in a 

vacuum. . . .“ 

Source: 

https://mirror.uncyc.org/wiki/Spherical_Cows



Strong need of nonlinear methods to 

extract reliable information from data

Why nonlinear ?
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Because in nature the whole is not 

always equal to the sum of the parts



 Introduction

− Historical development: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications.

 Bivariate analysis

− Correlation, directionality and causality. 

− Applications.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Applications.

Outline
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Optical spikes Neuronal spikes

• Similar dynamical systems generate these signals?

• Ok, very different dynamical systems, but maybe 

similar statistical properties?

• Time series analysis finds “hidden similarities” in 

very different systems.

Time (s)

Time Series Analysis: what is this about?
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Main goal of Time Series Analysis: to extract meaningful 

information

What for?

‒ Classification

‒ Prediction 

‒ Model verification

‒ Parameter estimation

‒ Etc.



T. A. Schieber et al, Nat. Comm. 8:13928 (2017).

Example: analysis of EEG signals allows to distinguish 

control from alcoholic subjects

http://www.nature.com/articles/ncomms13928.pdf


Example: inferring climatic interactions 
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Surface Air Temperature

Anomalies in different 

geographical regions

Donges et al, Chaos 2015

https://arxiv.org/abs/1507.01571


 Many methods have been developed to extract information 

from a time series (x1, x2, … xN).

 The method to be used depends on the characteristics of the 

data

− Length of the time series; 

− Stationarity; 

− Level of noise; 

− Temporal resolution;

− etc.

 Different methods provide complementary information.

Methods
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 Modeling assumptions about the type of dynamical system 

that generates the data:

‒ Stochastic or deterministic?

‒ Regular or chaotic or “complex”?

‒ Stationary or non-stationary? Time-varying parameters?

‒ Low or high dimensional?

‒ Spatial variable? Hidden variables?

‒ Time delays? Etc.

Where the data comes from?
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 Good results depend on the 

knowledge of the system that 

generates the time series. 



Brief historical tour, from 

dynamical systems to 

complex systems



 Mid-1600s: Ordinary differential equations 

(ODEs)

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem (earth 

around the sun).

 Since then: a lot of effort for solving the “three-

body” problem (earth-sun-moon) – Impossible.

The start of dynamical systems theory



 Henri Poincare (French mathematician). 

Instead of asking “which are the exact positions of planets 

(trajectories)?” 

he asked: “is the solar system stable for ever, or will planets 

eventually run away?”

 He developed a geometrical approach to solve the problem.

 Introduced the concept of “phase space”.

 He also had an intuition of the possibility of chaos.

Late 1800s

x
y

z



Deterministic system: the initial conditions fully 

determine the future state.  There is no randomness 

but the system can be unpredictable.

Poincare: “The evolution of a deterministic system can 

be aperiodic, unpredictable, and strongly depends on the 

initial conditions”



 Computes allowed to experiment with equations.

 Huge advance in the field of “Dynamical Systems”.

 1960s: Eduard Lorentz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere.

 Chaotic motion.

1950s: First computer simulations



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977)

 Thermodynamic systems far from equilibrium.

 Discovered that, in chemical systems, the 

interplay of (external) input of energy and 

dissipation can lead to “self-organized” patterns.

Order within chaos and self-organization



Honey bees do a spire wave to 

scare away predators 

https://www.youtube.com/watc

h?v=Sp8tLPDMUyg

The study of spatio-temporal structures has uncovered 

striking similarities in nature
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https://media.nature.com/original/nature-

assets/nature/journal/v555/n7698/extref/nature26001-sv6.mov

Rotating waves 

occur in the heart 

during ventricular 

fibrillation

Hurricane Maria 

(Wikipedia)
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Spiral vegetation patterns in San 

Pedro de Atacama, Chile
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Model simulation showing the temporal transition from 

localized patterns to arcs and spirals.

Morocco

Phil. Trans. R. Soc. A 376 20180026 (2018)
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Control parameter (mortality)



 Robert May (Australian, 1936): population biology

 "Simple mathematical models with very 

complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), even though 

simple and deterministic, can exhibit different types of 

dynamical behaviors, from stable points, to a 

bifurcating hierarchy of stable cycles, to apparently 

random fluctuations. 

)(1 tt xfx 
)1( )( xxrxf Example:



The logistic map
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“period-doubling” 

bifurcations to chaos
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Parameter r

x(i)

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient 

dynamics 

→ stationary 

oscillations

(regular or 

irregular)



 In 1975, Mitchell Feigenbaum (American 

mathematician and physicist 1944-2019), 

using a small HP-65 calculator, discovered 

the scaling law of the bifurcation points

Universal route to chaos
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 Then, he showed that the same behavior, 

with the same mathematical constant, 

occurs within a wide class of functions, prior 

to the onset of chaos (universality).

Very different systems (in chemistry, 

biology, physics, etc.) go to chaos in the 

same way, quantitatively.

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator



Attractors: fixed points, limit cycles, torus, chaotic 

(strange) attractors



• Attractors can be created or destroyed

• The stability of an attractor can change

 There are many examples in physical systems, biological 

systems, etc.

Brief introduction to bifurcations

 A qualitative change (in the structure of the phase space) when 

a control parameter is varied:

Further reading: Strogatz, Nonlinear dynamics and chaos



Example: neuronal spikes

Control parameter increases in time

Further reading: Eugene M. Izhikevich, Dynamical Systems in Neuroscience



Physical interpretation of a bifurcation



Bifurcation but no change of 

behavior

Change of behavior but no 

bifurcation

Bifurcations are not the same a 

qualitative change of behavior



 Benoit Mandelbrot (Polish-born, French 

and American mathematician  1924-

2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



 Are characterized by a “fractal” dimension that measures 

roughness.

Fractal objects

Video: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

Broccoli

D=2.66
Human lung

D=2.97

Coastline of 

Ireland

D=1.22

A lot of research is focused on detecting fractal objects 

underlying real-world signals.

http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180


The 1990s: synchronization of chaotic systems
Pecora and Carroll, PRL 1990

Unidirectional coupling of two chaotic systems: one variable, 

‘x’, of the response system is replaced by the same variable 

of the drive system.



http://www.youtube.com/watch?v=izy4a5erom8

In mid-1600s Christiaan Huygens (Dutch 

mathematician) noticed that two pendulum clocks 

mounted on a common board synchronized with 

their pendulums swinging in opposite directions (in-

phase also possible).

First observation of synchronization: 

mutual entrainment of pendulum clocks

http://www.youtube.com/watch?v=izy4a5erom8


Different types of synchronization

 Complete: x1(t) = x2(t) (identical systems) 

 Phase:  the phases of the oscillations synchronize, but 

the amplitudes are not.

 Lag: x1(t+) = x2(t)

 Generalized:   x2(t) = f( x1(t) ) (f can depend on the 

strength of the coupling)

A lot of research is focused on detecting synchronization in 

real-world signals.
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Lynx populations oscillate regularly and periodically in phase, 

but with irregular and chaotic peaks in abundance.

Lynx abundances 

from six regions in 

Canada



Synchronization of a large 

number of coupled oscillators  



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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Kuramoto model

(Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the 

coupling strength increases

Strogatz, Nature 2001

Strogatz and 

others, late 90’ 

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


The synchronization 

transition can be explosive



Rossler oscillators
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S=

Simulations Experiments (chaotic circuits)

I. Leyva et al, PRL 108, 168702 (2012)



 Interest moves from chaotic systems to complex systems

(small vs. very large number of variables).

 Networks (or graphs) of interconnected systems

 Complexity science: dynamics of emergent properties

‒ Epidemics

‒ Rumor spreading

‒ Transport networks

‒ Financial crises

‒ Brain diseases

‒ Etc.

End of 90’s - present



 species (nodes) are connected by pairwise 

interactions (links)

Networks in ecology

54



Network science

Source: Strogatz

Nature 2001

The challenge: to understand how the network structure 

and the dynamics (of individual units) determine the 

collective behavior.



 The problem was to devise a walk through the city that 

would cross each of those bridges once and only once. 

The start of Graph Theory: 

The Seven Bridges of Königsberg (Prussia, now Russia) 
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 By considering the number of odd/even links of each 

“node”, Leonhard Euler (Swiss mathematician) 

demonstrated in 1736 that is impossible. 

→ →

Source: Wikipedia



Summary

 Dynamical systems allow to 

‒ understand low-dimensional systems, 

‒ uncover patterns and “order within chaos”, 

‒ characterize attractors, uncover universal features

 Synchronization: emergent behavior of interacting dynamical 

systems.

 Complexity and network science: emerging phenomena in 

large sets of interacting units.

 Time series analysis develops 

tools to characterize complex 

signals.

 Is an interdisciplinary research 

field with many applications.
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