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What do we study?

= Nonlinear and stochastic Data analysis
phenomena

— laser dynamics
— neuronal dynamics
— complex networks

— data analysis (climate,
biomedical signals)

Nonlinear

dynamics Applications



Lasers, neurons, climate, complex systems?

= Lasers allow us to study in a controlled way phenomena that
occur in diverse complex systems.

= Laser experiments allow to generate sufficient data to test new
methods of data analysis for prediction, classification, etc.

Laser & neuronal spikes
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In complex systems dynamical transitions
are difficult to identify and to characterize.
Example: laser with time delayed optical feedback
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How complex optical signals emerge from noise

Quantitative identification of dynamical transitions
in a semiconductor laser with optical feedback

Carlos Quintero, Jordi Tiana-Alsina, Jordi Roma,
M. Carme Torrent, and Cristina Masoller.

Recerca en Dindmica No Lineal, Optica No Linea e s

Dinamica i Optica No Lineal i Lasers (DONLL)
Dept. Fisica, Terrassa, Barcelona, Spain

Video: how complex optical signals emerge from noisy
fluctuations
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https://youtu.be/nltBQG_IIWQ

Laser output intensity
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Are weather extremes becoming more frequent?
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Physics Today, Sep: 20.1»7
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Surface air temperature in two different regions
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Can changes be quantified? With what reliability?
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Vulcanoes

The Climate System is a “complex system”

Stratospheric Dynamics/Physics

Atmospheric Physics/Dynamics
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Thanks to advances in computer science, global climate
models allow for good weather forecasts

THE CI.IMATE MACHINE
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Mid-1980s - Mid-1990s

" Overturning

circulation Plants and soil

Nature, February 2010




But global climate models are not very useful for
Improving our understanding

« But “over-simplified models” do not
always provide useful information.

In early summer, 1996, milk production at a
Wisconsin dairy farm was very low. The farmer
wrote to the state university, asking help from
academia. A multidisciplinary team of professors
was assembled, headed by a theoretical physicist,
and two weeks of intensive on-site investigation
took place. A few weeks later, a physicist phoned
the farmer, "I've got the answer," he said, "But it
only works when you consider spherical cows in a
vacuum. . . ."

Source:
https://mirror.uncyc.org/wiki/Spherical_Cows
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Strong need of nonlinear methods to
extract reliable information from data

Why nonlinear ?



Because in nature the whole is not
always equal to the sum of the parts
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Outline

" Introduction
— Historical development: from dynamical systems to complex systems

= Univariate analysis
— Methods to extract information from a time series.
— Applications.

= Bivariate analysis
— Correlation, directionality and causality.
— Applications.

= Multivariate analysis
— Many time series: complex networks.
— Network characterization and analysis.
— Applications.
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Time Series Analysis: what is this about?

Optical spikes Neuronal spikes
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Similar dynamical systems generate these signals?
Ok, very different dynamical systems, but maybe

similar statistical properties?

Time series analysis finds “hidden similarities™ in

very different systems.

5000
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Main goal of Time Series Analysis: to extract meaningful

Information

What for?

— Classification

— Prediction

— Model verification
— Parameter estimation

— Etc.

WPoRmAkion:

v'kﬂo\d \ecbe :
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Example: analysis of EEG signals allows to distinguish
control from alcoholic subjects

T. A. Schieber et al, Nat. Comm. 8:13928 (2017).



http://www.nature.com/articles/ncomms13928.pdf

Example: inferring climatic interactions
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Donges et al, Chaos 2015



https://arxiv.org/abs/1507.01571

Methods

= Many methods have been developed to extract information
from a time series (Xq, X5, ... Xy)-

*= The method to be used depends on the characteristics of the
data

— Length of the time series; | lam0sc mean monily S alba terpcsars i al gl mvand a2
— Stationarity; ol

— Level of noise; : i .

— Temporal resolution; ) W vt

— etc. y

|
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= Different methods provide complementary information.
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Where the data comes from?

= Modeling assumptions about the type of dynamical system
that generates the data:

— Stochastic or deterministic?

— Regular or chaotic or “complex”?

— Stationary or non-stationary? Time-varying parameters?
— Low or high dimensional?

— Spatial variable? Hidden variables?

— Time delays? Etc.

= Good results depend on the
knowledge of the system that
generates the time series.
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Brief historical tour, from
dynamical systems to
complex systems



The start of dynamical systems theory

= Mid-1600s: Ordinary differential equations
(ODESs)

= |saac Newton: studied planetary orbits and
solved analytically the “two-body” problem (earth
around the sun).

= Since then: a lot of effort for solving the “three-
body” problem (earth-sun-moon) — Impossible.



Late 1800s

Henri Poincare (French mathematician).

Instead of asking “which are the exact positions of planets
(trajectories)?”

he asked: “Is the solar system stable for ever, or will planets
eventually run away?”

He developed a geometrical approach to solve the problem.

Z
Introduced the concept of “phase space”. ) )—— y

He also had an intuition of the possibility of chaos.




Poincare: “The evolution of a deterministic system can
be aperiodic, unpredictable, and strongly depends on the
initial conditions”

prediction
fails out here

t=0

2 initial conditions,
almost indistinguishable

[=1 horizon

Deterministic system: the initial conditions fully
determine the future state. There is no randomness
but the system can be unpredictable.



1950s: First computer simulations

Computes allowed to experiment with equations.

Huge advance in the field of “Dynamical Systems”.

1960s: Eduard Lorentz (American mathematician
and meteorologist at MIT): simple model of
convection rolls in the atmosphere.

Chaotic motion.




Order within chaos and self-organization

= |lya Prigogine (Belgium, born in Moscow, Nobel
Prize in Chemistry 1977)

= Thermodynamic systems far from equilibrium.

= Discovered that, in chemical systems, the
Interplay of (external) input of energy and
dissipation can lead to “self-organized” patterns.




The study of spatio-temporal structures has uncovered
striking similarities in nature

. !
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Honey bees do a spire wave to Rotating waves Hurricane Maria
scare away predators occur in the heart (Wikipedia)
https://www.youtube.com/watc during ventricular

h?v=Sp8tLPDMUyg fibrillation

https://media.nature.com/original/nature-
assets/nature/journal/v555/n7698/extref/nature26001-sv6.mov 4,



Spiral vegetation patterns in high-altitude wetlands

Cristian Fernandez-Oto”, Daniel Escaff, Jaime Cisternas

Complex Systems Group, Facultad de Ingenierfa y Ciencias Aplicadas, Universidad de los Andes, Av. Mon. Alvaro del Portillo, 12455 Santiago, Chile

Ecological Complexity 37 (2019) 38—-46

Spiral vegetation patterns in San
Pedro de Atacama, Chile



Observation and modelling of
vegetation spirals and arcs in
Isotropic environmental
conditions: dissipative
structures in arid landscapes

M. Tlidi', M. G. Clerc?, D. Escaff’, P. Couteron®,
M. Messaoudi®, M. Khaffou and A. Makhoute’

Phil. Trans. R. Soc. A 376 20180026 (2018)
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Model simulation showing the temporal transition from
localized patterns to arcs and spirals.
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MARINE ECOLOGY

Fairy circle landscapes under the sea

Daniel Ruiz-Reynés,' Damia Gomila,'* Tomas Sintes,’ Emilio Hernandez-Garcia,’
Marba,” Carlos M. Duarte®
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Fig. 1. Examples of fairy circles and spatial patterns in Mediterranean seagrass
meadows. (A) Side-scan image of a seagrass meadow in Pollenca bay (Mallorca



The 1970s

= Robert May (Australian, 1936): population biology
= "Simple mathematical models with very
complicated dynamics®, Nature (1976).

X, = T(X) Example: T (X)=rx(1-X)

= Difference equations (“iterated maps”), even though
simple and deterministic, can exhibit different types of
dynamical behaviors, from stable points, to a
bifurcating hierarchy of stable cycles, to apparently
random fluctuations.




(i)

The logistic map

- X(1+1) =r x()[1-x(1)]

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation — long-term stability
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Universal route to chaos

= |n 1975, Mitchell Feigenbaum (American
mathematician and physicist 1944-2019),
using a small HP-65 calculator, discovered
the scaling law of the bifurcation points

i r-.—r
lim  TaThe _ 46690
rn o rn—1

" Then, he showed that the same behavior,
with the same mathematical constant,
occurs within a wide class of functions, prior
to the onset of chaos (universality).

V_ery different_systems (in chemistr_y, HP-65 calculator: the
biology, physics, etc.) go to chaos in the first magnetic card-
same way, quantitatively. programmable

handheld calculator



Attractors: fixed points, limit cycles, torus, chaotic

(strange) attractors
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Brief introduction to bifurcations

= A qualitative change (in the structure of the phase space) when
a control parameter is varied:
* Afttractors can be created or destroyed
* The stability of an attractor can change

= There are many examples in physical systems, biological
systems, etc.

beam "buckles”

beam

A S Vi A

Further reading: Strogatz, Nonlinear dynamics and chaos



Example: neuronal spikes

layer 5 pyramidal cell brainstem mesV cell

transition

60 mV

transition
\ |2E.'I mV
_/ N U)uuwuwuwwduJuu.}HUL i

3000 pA

500 ms

Control parameter increases in time

Further reading: Eugene M. Izhikevich, Dynamical Systems in Neuroscience



Physical interpretation of a bifurcation

Monostability

Bifurcation
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Bifurcations are not the same a
gualitative change of behavior

Bifurcation but no change of Change of behavior but no
behavior bifurcation

|
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The late 1970s

= Benoit Mandelbrot (Polish-born, French
and American mathematician 1924-
2010): “self-similarity” and fractal
objects:
each part of the object is like the whole
object but smaller.

= Because of his access to IBM's
computers, Mandelbrot was one of the
first to use computer graphics to create
and display fractal geometric images.




Fractal objects

= Are characterized by a “fractal” dimension that measures
roughness.

Broccoll Human lung Coastline of
D=2.66 D=2.97 Ireland
D=1.22

A lot of research is focused on detecting fractal objects
underlying real-world signals.

Video: http://www.ted.com/talks/benoit mandelbrot fractals the art of roughness#t-149180



http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness#t-149180

The 1990s: synchronization of chaotic systems
Pecora and Carroll, PRL 1990

Unidirectional coupling of two chaotic systems: one variable,
‘X', of the response system is replaced by the same variable
of the drive system.

X1
YI PY2 I — o0 yz—yl‘—>0, ZZ—ZI‘—>0
gl —P 22

Drive Response



First observation of synchronization:
mutual entrainment of pendulum clocks

In mid-1600s Christiaan Huygens (Dutch
mathematician) noticed that two pendulum clocks
mounted on a common board synchronized with
their pendulums swinging in opposite directions (in-
phase also possible).

Figure 1.2. Original
drawing of Christiaan
Huygens illustrating his
experiments with two
pendulum clocks placed on
a common support.

http://www.youtube.com/watch?v=izy4a5erom8



http://www.youtube.com/watch?v=izy4a5erom8

Different types of synchronization

dv, / dt = F(x,)
dv,/dt = F(x,)+aE(x, —x, )

= Complete: x,(t) = x,(t) (identical systems)

= Phase: the phases of the oscillations synchronize, but
the amplitudes are not.

" Lag: X1(t+7) = X,(1)
= Generalized: x,(t) =f(x.(t)) (fcan depend on the
strength of the coupling)

A lot of research is focused on detecting synchronization in
real-world signals.



Complex dynamics and phase
synchronization in spatially
extended ecological systems

Bernd Blasius, Amit Huppert & Lewi Stone

The Porter Super-Center for Ecological and Environmental Studies & Department
of Zoology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
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Lynx abundances

1 from six regions in
1 Canada

Lynx populations oscillate regularly and periodically in phase,
but with irregular and chaotic peaks in abundance.
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Synchronization of a large
number of coupled oscillators

Figure 1| Fireflies, fireflies burning bright. In the forests of the night,
certain species of firefly flash in perfect synchrony — here Pteroptyx
malaccae in a mangrove apple tree in Malaysia. Kaka ef al.” and
Mancoff et al.” show that the same principle can be applied to
oscillators at the nanoscale.



Kuramoto model
(Japanese physicist, 1975)

Model of all-to-all coupled phase oscillators.

dé K . .
_I p— A _I__ Sln 8- _0- _I_ H ] I :1IIIN
dt w; N ?21 ( j |) §|

K = coupling strength, & = stochastic term (noise)

Describes the emergence of collective behavior
How to quantify? N

. iy _ 1 10
With the order parameter; € = ﬁZe

j=1

r =0 incoherent state (oscillators scattered in the unit circle)
r =1 all oscillators are in phase (0;=6; V 1))



Synchronization transition as the
coupling strength increases

Strogatz and
others, late 90’

Strogatz, Nature 2001  Video: https://www.ted.com/talks/steven_strogatz_on_sync



https://www.ted.com/talks/steven_strogatz_on_sync

The synchronization
transition can be explosive



N
Rossler oscillators i = —a,.[r(x,. —d ) a;lx; —xs)) + By; + A]
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Simulations Experiments (chaotic circuits)
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FIG. 1 (color online). Phase synchronization degree S as a
function of the coupling strength d for different SF networks
of size N = 1000, and average degree (k) = 6. The networks are
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|. Leyva et al, PRL 108, 168702 (2012)



End of 90’s - present

" |nterest moves from chaotic systems to complex systems
(small vs. very large number of variables).

= Networks (or graphs) of interconnected systems

= Complexity science: dynamics of emergent properties
— Epidemics
— Rumor spreading
— Transport networks
— Financial crises
— Brain diseases
— Etc.



Networks in ecology

= species (nodes) are connected by pairwise
Interactions (links)

Flower-visiting insect

parasitoid
Secondary

aphid
parasitoid

Seed-feeding  Insect /}*\ ek i
bird eder )
seed»!g . Seed-feeding
parasitoid

insect
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Network science

The challenge: to understand how the network structure
and the dynamics (of individual units) determine the
collective behavior.

Source: Strogatz
Nature 2001



The start of Graph Theory:
The Seven Bridges of Konigsberg (Prussia, now Russia)

®= The problem was to devise a walk through the city that
would cross each of those bridges once and only once.

By considering the number of odd/even links of each
“‘node”, Leonhard Euler (Swiss mathematician)
demonstrated in 1736 that is impossible.
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Summary

Dynamical systems allow to

— understand low-dimensional systems,

— uncover patterns and “order within chaos’,

— characterize attractors, uncover universal features

Synchronization: emergent behavior of interacting dynamical
systems.

Complexity and network science: emerging phenomena in
large sets of interacting units.

Time series analysis develops

tools to characterize complex

signals. \
Is an interdisciplinary research 54 4
field with many applications.
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