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 Introduction

− Historical developments: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications.

 Bivariate analysis

− Extracting information from two time series.

− Correlation, directionality and causality. 

− Applications.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Climate networks.
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 A graph: a set of 

“nodes” connected 

by a set of “links”.

 Nodes and links can 

be weighted or 

unweighted.

 Links can be 

directed or 

undirected.

What is a network?



Networks or graphs

Source: Strogatz

Nature 2001

The challenge in the context of time series analysis: to infer 

the underlying network structure from observed signals.



Connected components 

(“communities”)
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A graph with three connected components.

Source: Wikipedia



Using statistical similarity measures 

to infer interactions from data: 

“functional networks”



Brain functional network

Eguiluz et al, PRL 2005

Sij > Th

 Aij = 1, 

else Aij=0

Adjacency 

matrix



Graphical representation
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Thresholded

matrix = inferred 

(“functional”) 

network

Adjacency matrix Degree of a node: number of links

ki = j Aij



The degree distribution: usual way to characterize a graph

Strogatz, Nature 2001

Regular
Random Scale-free



The climate system as a set of “interacting oscillators”
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Complex network representation of the climate system

Donges et al, Chaos 2015

Surface Air Temperature

Anomalies (solar cycle removed)

Back to the climate 

system: interpretation 

(currents, winds, etc.)

More than 

10000 

nodes 

(with 

different 

sizes).

Daily 

resolution: 

more than 

13000 data 

points in 

each TS
Sim. measure 

+ threshold



Brain network Climate network
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Area weighted 

connectivity 

(AWC):
weighted degree 

(nodes represent 

areas with 

different sizes) 



Three criteria are typically used: 

 A significance level is used (typically 5%) in 

order to omit connectivity values that can be 

expected by chance;

 We select an arbitrary value as threshold, such 

that it gives a certain pre-fixed number of links 

(or link density);

 We define the threshold as large as possible 

while guaranteeing that all nodes are connected 

(or a so-called “giant component” exists).

How to select the threshold ?

13
C. M. van Wijk et al., “Comparing Brain Networks of Different Size and

Connectivity Density Using Graph Theory”, PLoS ONE 5, e13701 (2010)

Sij > Th  Aij = 1, 

else Aij=0



Comparison of area weighted connectivity with |CC| and MI
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AWC computed with |cross-correlation| AWC computed with mutual information

Donges et al, Eur. Phys. J. Special Topics 174, 157 (2009)

The threshold was selected to give a network with the same link density (0.005)

https://arxiv.org/abs/0907.4359


Influence of the threshold
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=0.027 =0.01 =0.001 

M. Barreiro, et. al, Chaos 21, 013101 (2011)

http://www.fisica.edu.uy/~cris/Pub/chaos_2011.pdf


Problems with thresholding
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 The number of connected components as a function of 

threshold reveals different  structures.

 But thresholding near the dotted lines indicates (inaccurately) 

that networks 1 and 2 have similar structures.

Giusti et al., J Comput Neurosci (2016) 41:1–14

Network 1

Network 2



Software
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pyunicorn is available at https://github.com/pik-copan/

https://github.com/pik-copan/


Climate network with mutual information 

computed with probabilities of ordinal patterns 

high 

connectivity

low 

connectivity

inter-annual time-scale (3 consecutive 

years).  The color-code indicates the Area 

Weighted Connectivity (weighted degree) 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013)

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf


Network when the probabilities are 

computed with ordinal analysis
Network when the probabilities are 

computed with histogram of values
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Comparison: ordinal probabilities 

vs. histogram of data values

Color code indicates the area-

weighted connectivity

inter-annual 

time scale



Who is connected to who?

color-code indicates the MI 

values (only significant values) 

J. I. Deza, M. Barreiro, and C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013)

AWC map

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf


Influence of the time-scale of the pattern

21Longer time-scale  increased connectivity



Network characterization



 Adjacency matrix: Aij = 1 if i and j are connected, else Aij = 0.

 Degree of a node ki = j Aij

 Clustering coefficient: measures the fraction of a node’s 

neighbors that are neighbors also among themselves

Definitions (for unweighted and undirected graphs)
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Ri is the number of connected pairs 

in the set of neighbors of node i

 Assortativity: measures the tendency of a node 

with high/low degree to be connected to other 

nodes with high/low degree



 Mean (expected value of X): =)

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: “measures” the asymmetry of the distribution

 Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

How to characterize the degree distribution?  

24

S = E[Z3]

K = E[Z4]



Diameter: longest shortest path

25
A. Viol et al., Entropy 2019, 21, 128

Node Distance Distribution 

(NDD) of node i: fraction of 

nodes that are connected to 

node i at distance r.
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How to compare two distributions (degree, NDD, etc.)?

Distance between two distributions P and Pe

Read more: S-H Cha: Comprehensive Survey on Distance/Similarity Measures 

between Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007)

Euclidean

Kullback–Leibler divergence

(relative entropy)

Jensen divergence

http://www.fisica.edu.uy/~cris/teaching/Cha_pdf_distances_2007.pdf


Example of application: 

desertification transition 



Our goal: to develop reliable early-warning indicators 

Can we use “correlation networks” to detect the 

approach to a tipping point?



 w (in mm) is the soil water amount 

 B (in g/m2) is the vegetation biomass 

 Uncorrelated Gaussian white noise 

 R (rainfall) is the bifurcation parameter

Model

Shnerb et al. (2003), Guttal & Jayaprakash (2007), Dakos et al. (2011)



Saddle-node bifurcation

R<Rc: only desert-like solution (B=0)

Rc = 1.067 mm/day



Biomass time series

Biomass B when R=1.1 mm/day

100 m x 100 m = 104 grid cells

Simulation time 5 days in 500 time steps

Periodic boundary conditions  



Correlation Network

Statistical similarity 

measure: 

Pearson coef.= 

|zero-lag cross-

correlation|

Threshold: Th=0.2 keeps only 

significant correlations (p<0.05)

G. Tirabassi et al., Ecological Complexity (2014)

Sij > Th  Aij = 1, else Aij=0

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


‘‘Gaussianization’’ of the distributions of ai & ci as the 

tipping point is approached

clustering 

assortativity 

skewness kurtosis 



The ‘‘Gaussianisation’’ is quantified by the Kullback

distance to a Gaussian (Z) distribution

G. Tirabassi et al., Ecological Complexity 19, 148 (2014)

 Open issue: the 

“Gaussianisation” 

might be a model-

specific feature.

 How to precisely 

quantify changes of 

the network?

 We need a distance to 

compare graphs.

http://www.fisica.edu.uy/~cris/Pub/Ecological_2014.pdf


How to compare different 

networks?



 Hamming distance

Labelled networks with the same size

36

 Main problem: not all the links have the same importance.

L. Carpi et al, Sci. Reports 9, 4511 (2019)



 Degree, centrality, assortativity distributions etc. provide 

partial information.

 How to define a measure that contains detailed information 

about the global topology of a network, in a compact way?

 Node Distance Distributions (NDDs)

 pi(r) of node i is the fraction of nodes that are connected to 

node i at distance r

 A network with N nodes is characterized by N pdfs 

{p1, p2, …, pN}

 If two networks have the same set of NDDs  they have the 

same diameter, the same average path length, etc.

In order to detect structural differences we need 

a precise measure to compare networks



The Network Node Dispersion (NND) of a graph G quantifies the 

heterogeneity of the node distance distributions {p1, p2, …, pN}

How to summarize the information contained in the 

node distance distributions?

d = diameter

iipaverage NDD:

)1log(

),(
)(




d

pJ
GNND ii 

 









r

i
ii

r

rp
rppJ

)(

)(
log)(),(




Kullback distance between 

pi and :



 Extensive numerical experiments demonstrate that isomorphic 

graphs return D=0.

 Computationally efficient.

 Can be used to compare graphs with different number of 

nodes.

Dissimilarity between two networks

w1=w2=0.5

compares the 

averaged 

connectivity

compares the 

heterogeneity of the 

connectivity distances

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017)

http://www.nature.com/articles/ncomms13928.pdf


 EEG data *

‒ 64 electrodes placed on the subject’s scalp sampled at 256 

Hz during 1s

‒ 107 subjects: 39 control and 68 alcoholic

 Use HVG to transform each EEG TS into a network G.

 Weight between two brain regions: 1-D(G,G’)

 The resulting network represents the weighted similarity 

between the brain regions of an individual.

 We can compare the different individuals.

First application: comparing brain networks

* https://archive.ics.uci.edu/ml/datasets/eeg+database



(Reminder) How to represent a time series as a network?: 

the horizontal visibility graph (HVG)

Luque et al PRE (2009); Gomez Ravetti et al, PLoS ONE (2014)

 Unweighted and undirected graph

Rule: data points i and j are connected if there is “visibility” 

between them

i

Xi

Parameter free!



For each subject, the time series recorded at each 

electrode is transformed into a graph

…

Dataset has 64 channels  64 networks



The brain network of each subject

 The weight of the link between two graphs (G, G’) representing 

two brain regions is defined as: 1-D(G,G’)

 The resulting network (with 64 nodes=electrodes, all-to-all 

coupled with weighted links) represents the similarity between 

the EEG signals in different brain regions of one subject.

 We can then compare different subjects.

…



We identify two brain regions (called ‘nd’ and ‘y’), 

where the connection strength between these regions 

is higher in control than in alcoholic subjects.

T. A. Schieber et al, Nat. Comm. 8, 13928 (2017)

http://www.nature.com/articles/ncomms13928.pdf


Second application: classification of retina images

Pablo Amil (UPC), Fabian Reyes (Mexico) & Irene Sendiña (Madrid)

Beoptical.euITN



Network identification and analysis of the 

connectivity paths to the central node



 From each image we calculate

- Distribution of distances to the central node

- Distribution of average weights along the path to central node

Method (1/2)
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length and width (in # of 

pixels) of the segment that 

connects nodes i and j.

distribution of average weights

(l=1, a=-2) 



 We use the Jensen-Shanon (JS) divergence to compare the 

distributions: for each image “i“ we obtain a vector 

{di1, di2, … diN} (N = number of image) 

whose elements are the distances between the distributions 

extracted from image i and image j.

 {di1, di2, … diN} are N “features” that characterize image i.

 We apply a nonlinear dimensionality reduction algorithm 

(IsoMap) to obtain only 2 features for each image.

Method (2/2)

48

J. B. Tenenbaum et al, A global geometric framework for nonlinear dimensionality 

reduction. Science 290, 2319 (2000).



Results

Distance distribution to central node Mean weight distribution

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, 

PLoS ONE in press (2019).



How to “infer” interactions 

from observed data?



 How to select the threshold?

 In “spatially embedded networks”, nearby nodes have the 

strongest links.

 How to keep weak-but-significant links?

 There are many statistical similarity measures to infer 

interactions from observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

A classification problem

51

Sij > Th  Aij = 1, else Aij=0



Lagged |cross correlation|: 

Observed time series in nodes i and j: ai (t),  aj (t),  t=1, …,T

(normalized =0, =1)

Goal: use a system with known connectivity to test the 

performance of statistical similarity measures

Statistical Similarity Measure:

Sij = max | CCij () |

= | CCij (ij) | ij in [0,max]

G. Tirabassi et al., “Inferring the connectivity of coupled oscillators from time-series 

statistical similarity analysis”, Sci. Rep. 5 10829 (2015).

We compare with the Mutual Information, computed from 

probabilities of “raw” values and from ordinal probabilities 

https://www.nature.com/articles/srep10829.pdf


Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 

https://www.nature.com/articles/srep10829.pdf
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform 

was used to obtain 

phases from 

experimental data

for each coupling strength
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Results obtained with experimental data

Masoller 57

Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



12 electronic chaotic circuits

How the distributions of similarity values and ij values 

change with the coupling strength?

58

N. Rubido and C. Masoller, “Impact of lag information on network

inference”, Eur. Phys. J. Special Topics 227, 1243-1250 (2018).



Using lag information to infer the links

Three possible criteria:

The link i  j exists if

• SIM : only SSM criteria holds (Sij > TH )

• AND: both criteria hold (Sij > TH and ij < TH )

• OR: at least one criteria holds (Sij > TH or ij < TH )

If Sij > TH the link i  j exists, otherwise, it does not exist

If ij < TH the link i  j exists, otherwise, it does not exist



Quantifying the three criteria with receiver operating 

characteristic (ROC curve)

SIM

AND

OR

Source: wikipedia



Uncoupled oscillators Coupled oscillators
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Results

62

50 Kuramoto phase oscillators, 10% existing links,            

Similarity ij = max cross-correlation of cos(i), cos(j)

Coupling strength

Coupling strength

Order parameter

All

Exist

No exist

SIM AND OR



Variation of similarity and ij values with the coupling

63



For different parameters: explosive transition to sync

Oscillators can be linked if they have different frequencies:

I. Leyva et al. Explosive transitions to synchronization in networked phase 

oscillators. Scientific Reports 3 (2013) 1281

Coupling strength



28 electronic chaotic circuits

Results obtained from experimental data

65

Data from: R. Sevilla-Escoboza & J. M. Buldu, Synchronization of networks of chaotic 

oscillators: Structural and dynamical data sets. Data in Brief 7 (2016) 1185–1189



Community detection



 Goal: to construct a network in 

which regions with similar climate 

(e.g., continental) are in the same 

“community”.

 Problem: not possible with the 

“usual” correlation-based method 

to construct the network because 

NH and SH are only indirectly 

connected.
67

Climate “communities”

How to identify regions with similar climate?



 Step 1: transform SAT anomalies in each node in a sequence 

of symbols (we use ordinal patterns)

si = {012, 102, 210, 012…}        sj = {201, 210, 210, 012, …}

 Step 2: in each node compute the transition probabilities

TP i = #(→)/N

 Step 3: define the weights

 Step 4: threshold wij to obtain the adjacency matrix.

 Step 5: run a community detection algorithm (Infomap).

Network construction based on 

similar symbolic dynamics

68

  






2

1

ji
ij

TPTP
w

High weight 

if similar 

symbolic 

“language”



Results
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TP Network CC Network (only the largest 16)

G. Tirabassi and C. Masoller, “Unravelling the community structure of 

the climate system by using lags and symbolic time-series analysis”, 

Sci. Rep. 6, 29804 (2016).

http://www.nature.com/articles/srep29804


 Infomap (http://www.mapequation.org/code.html) 

and many others.

 Infomap clusters tightly interconnected nodes 

into modules and detects nested modules.

 Many other algorithms have been proposed.

 Further reading: S. Fortunato, “Community 

detection in graphs”, Phys. Rep. 486, 75 (2010).

Community detection algorithms

70



Generalizations of complex 

network analysis



Network structures:

Multilayer, multiplex, bipartite, networks of 

networks and many others

72



What is diversity?

Takes into account three characteristics of a population: 

How to quantify the diversity of a complex system?

73

 Diversity in some attributes

(e.g. atoms with different 

masses; people with different 

heights), 

 Diversity of types (e.g., atoms 

or molecules; males or 

females),

 Diversity in configuration (e.g., 

configuration of atoms in a 

molecule; hierarchical or 

unstructured relations).



 Two quantifications of diversity:

• How diverse the connectivity paths that a node has in the 

different layers are; 

• How diverse the layers are.

 To quantify diversity we first need to define a “distance” to 

compare 

• the paths of a node in the different layers, 

• the different layers. 

Diversity of complex systems 

represented by multiplex networks

74



 Di=0: i has identical connectivity paths in layers p and q, 

 Di=1: i is not connected in one layer, while there are paths 

connecting i to all nodes in the other layer.

1) To quantify the differences in the connectivity paths of 

node i in layers p and q:

75

2) To quantify how different layers p and q are:

Node Distance 

Distribution of i in layer p

(global information)

Transition Matrix of i in layer p, 

(adjacency matrix rescaled by 

the degree of i; local information)



Examples
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 Main idea: the diversity of a system is defined by the distances 

between its elements: the larger the distances, the more 

different the elements are, and the more diverse the system is.

 The distance between the element g  S and the set S,      

D(g; S), is the smallest distance between g and any of the 

elements of S,

 Recursive definition:

U(S)=0 if |S|=1

 Diversity increases when a new element is included

Diversity measure

77



Example: diversity decreases (increases) when we 

include a link present (not present) in other layers

78

L. Carpi et al, Sci. Reports 9, 4511 (2019)

https://www.nature.com/articles/s41598-019-38869-0


Analysis of Europe air traffic network: distance between 

Vueling and other airlines

79

More 

similar 

routes to 

Vueling

More 

different 

routes to 

Vueling

L. Carpi et al, Sci. Reports 9, 4511 (2019)

https://www.nature.com/articles/s41598-019-38869-0


Diversity ordering:

80

Diversity ordering of Star Alliance (from less to more contribution): 

Brussels Airlines (BEL), Swiss Air (SWR), Polish Airlines (LOT), 

Air Portugal (TAP), Aegean Airlines (AEE), Austrian Airlines 

(AUA), Scandinavian Airlines (SAS), Turkish Airlines (THY), 

Lufthansa (DLH)

U=0.34U=0.97 U=0.33

Elements can be ordered in terms of their 

contribution to the diversity of the set.



Limitations of complex 

network analysis



 Links represent interactions between pairs of nodes.

 Simplicial complexes represent interactions among 

several nodes.

Interactions are not limited to pairs of elements

82

Example

Giusti et al., J Comput Neurosci (2016) 41:1–14



Concluding



 Multivariate analysis uncovers inter-relationships in datasets

 Different similarity measures are available for inferring the 

connectivity of a complex system from observations.

 Different measures can uncover different properties.

 Thresholding, hidden variables, hidden “nodes” can difficult 

or make impossible the inference of the network structure.

 Different sets of “communities” can be uncovered depending 

on the property that is analyzed. 

 Many many applications and challenges!

Take home messages
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