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 Introduction

− Historical developments: from dynamical systems to complex systems

 Univariate analysis

− Methods to extract information from a time series. 

− Applications.

 Bivariate analysis

− Correlation, directionality and causality. 

− Applications.

 Multivariate analysis

‒ Many time series: complex networks. 

‒ Network characterization and analysis. 

‒ Applications.

Outline
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 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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X = {x1, x2, … xN}

 First step: Look at the data. 

 Examine simple properties: 

‒ Return map: plot of xi vs. xi+

‒ Distribution of data values

‒ Auto-correlation

‒ Fourier spectrum

To begin with the analysis of a time-series
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Bi-decadal oxygen isotope data set d18O (proxy for 

palaeotemperature) from Greenland Ice Sheet Project 

Two (GISP2) for the last 10,000 years with 500 values 

given at 20 year intervals.

First example of a geophysical time series

5
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Discharge of the Elkhorn river (at Waterloo, Nebraska, 

USA) sampled daily for the period from 01 January 

1929 to 30 December 2001.

Second example

6
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



The geomagnetic auroral electrojet (AE) index sampled 

per minute for the 24 h period of 01 February 1978 and 

the differenced index:

Third example

7
A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Calculate the return maps and the distribution of data 

values for different values of the control parameter, r[3,4], 

starting from a random initial condition, x(1)  (0,1). 

Exercise 1: The Logistic map
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 Mean (expected value of X): =)

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: “measures” the asymmetry of the distribution

 Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

 Coefficient of variation: normalized measure of the width of 

the distribution.          Cv =  / ||

How to characterize a distribution 

of data values? 

9

S = E[Z3]

K = E[Z4]

)(tx



10

Source: Press WH et al. Numerical recipes: the art of scientific computing 

(Cambridge University Press)



Long tailed distribution? Outliers?
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Bonatto et al. PRL 107, 053901 (2011)



“Dragon kings”: extreme outliers

12

Hugo L. D. de S. Cavalcante et al PRL 111, 198701 (2013)



Time

Low current (noise?)

High current (chaos?)

Example: intensity emitted by a diode laser with feedback, 

as the pump current increases

Intermediate: spikes

Time

Time



By counting the number of times the 

intensity falls below a threshold we can 

distinguish the three regimes

14Panozzo et al, Chaos 27, 114315 (2017)

spikes

noise

chaos

-1.5

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


 The return map uncovers 

correlations.

 How to quantify?

 The autocorrelation function

 Normalization: =0, =1

 For a stationary process: 

( and  are constant in time)

Autocorrelation function (ACF)
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Auto-correlation detects linear relationships only

16Source: wikipedia



Correlation properties
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 Persistence: large values tend to follow large ones, and 

small values tend to follow small ones. 

 Anti-persistence: large values tend to follow small ones 

and small values large ones.

 Short-range correlations: values are correlated with one 

another at short lags in time

 Long-range correlations: values are correlated with one 

another at very long lags in time (all or almost all values are 

correlated with one another)



Back to the three examples of geophysical time series
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A. Witt and B. D. Malamud, Surv Geophys (2013) 34:541–651



Synthetic model: first-order autoregressive (AR(1)) process 
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White noise 

(uncorrelated 

random 

numbers, 

=0, =1)

A. Witt and B. D. Malamud, 

Surv Geophys (2013) 34:541–651

In mathlab r = normrnd(mu,sigma) generates a random number from 

the normal distribution with mean mu and standard deviation sigma. 



 Describes a signal in terms of its oscillatory components.

 Example: climatic time series involve oscillations in a wide 

range of scales

‒ hours to days,

‒ months to seasons, 

‒ decades to centuries,

‒ and even longer...

Fourier analysis

An ‘‘artist’s 

representation’’ of the 

power spectrum of 

climate variability (Ghil

2002).



 Discrete Fourier Transform

 = sampling interval

N = number of data points

Xk = complex Fourier coeff. of freq. fk= k/(N)

 The PSD gives the intensity of each frequency component:

 For stationary signals the inverse FT of the PSD is |C()| 

(Wiener–Khinchin theorem).

 How to calculate? Fast Fourier Transform (FFT). N=2m.

 With Matlab: z=fft(x); q=z.*conj(z); v=ifft(q).

Further reading: Press WH et al. Numerical recipes in C/Fortran: the art of scientific 

computing (Cambridge University Press)

The Power Spectrum (or power spectral density, PSD)
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Example: El Niño 3.4 index

Sea surface temperature (SST) anomaly in the Eastern 

tropical Pacific Ocean
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Year resolution, Source: climate explorer

 From 5°N to 5°S and from 170°W to 120°W

 An El Niño (La Niña) event is identified if the 5-month running-

average of the NINO3.4 index exceeds +0.4°C (-0.4°C) for at 

least 6 consecutive months.



“Periodogram” of NINO3.4 index

23

Are these peaks 

“significant”?

dataset:

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data

Peaks at 5.7 and 3.5 years



 Real observed time series. 

 Generate an ensemble of 

“surrogate” time series that are 

both “similar“ to the original and 

also consistent with the specific 

null hypothesis (NH) that we 

want to test. 

 Measure an statistical property: 

“d” in the original series and “s(i)” 

in the ensemble time series.

 Is “d” consistent with the 

distribution of “s(i)” values? 

− No! we reject the NH.

− Yes! we “fail to reject” the NH. 

The method of surrogate data

Taken from 

M. Small, Applied Nonlinear Time 

Series Analysis (World Scientific, 

2005)



Source: wikipedia

p value
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The p-value only measures the compatibility of an observation 

with a hypothesis, not the truth of the hypothesis.

Altman, N. and Krzywinski, M. Interpreting P values. Nature Methods 14, 213 (2017).



Further reading: G. Lancaster et al, “Surrogate data for hypothesis 

testing of physical systems”, Physics Reports 748 (2018) 1–60.

Surrogate test for nonlinearity
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A: Rossler with 

a = 0.165, b = 0.2 

and c = 10

B: High-order (linear) autoregressive process

Proper surrogates detect nonlinearity in 

A (reject NH) but not in B (fail to reject NH)



Examples of applications:
- Stochastic resonance in bistable systems

- Coherence resonance in excitable systems



Bistable system with sinusoidal forcing and noise
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Varying ; D constant



Time

Varying D;  constant

D

Time

x(t)

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)



Quantification of stochastic resonance with spectral analysis
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 Phase-averaged power spectral 

density: average over many 

realizations of the noise and average 

over the input initial phase .

 Signal to noise ratio at 

SNR()=

Noise strength, D

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)



Quantification of stochastic resonance 

with the distribution of residence times

Gammaitoni et al, Rev. Mod. Phys. 70, 223 (1998)



30

Strength of the nth peak: area under the peak

Number of 

switching 

times

D



 Nonlinear response to a 

perturbation: 

─ Above a threshold, rapid and 

large variation.

─ Below the threshold, small 

change

 Refractory period: cannot 

support another event until a 

certain amount of time has 

passed 

Excitable systems
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 Examples: neuronal spikes, cardiac beats, harmful algal blooms 



 Fitz Hugh–Nagumo model (=0.01, a =1.05)

Simple model of an excitable system

32

Autocorrelation

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)

D



 Characteristic correlation time

 Coefficient of variation of inter-spike-interval distribution Cv=/

How to quantify coherence resonance?
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c solid

Cv dashed 

Pikovsky and Kurths, Phys. Rev. Lett. 78, 775 (1997)



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis

34



 In real systems “attractors” live in high-dimensional spaces.

 Models are too complex or unknown.

What is an “attractor”?
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Why “attractor reconstruction” from a time series?

Lorentz model
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lynx abundances from six regions in Canada

Reconstructed attractor obtained by 

spatially averaging all regional lynx 

data and embedding the resulting 

time-series w(t) using lagged 

coordinates, w(t) versus w(t+) versus 

w(t+6) after filtering and interpolating.



Attractor reconstruction: “embed” the time series in a phase-space 

of dimension d using delay  coordinates

37

Adapted from U. Parlitz (Gottingen)

How to identify (and quantify) chaos in observed data? 

Observed time series S = {s(1), s(2), … s(t) … }
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Reconstruction using delay coordinates
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A problem: how to chose the embedding parameters 

(lag , dimension d)

Bradley and Kantz, CHAOS 25, 097610 (2015)



  is chosen to maximize the spread of the data in phase 

space: the first zero of the autocorrelation function (or where 

|C()| is minimum)

 d is often estimated with the false nearest neighbors 

technique that examines how close points in phase space 

remain close as the dimension is increased. 

 Points that do not remain close are ‘false’ neighbors.

 The number of false neighbors decreases as the embedding 

dimension is increased. 

 The first dimension for which the number of false neighbors 

decreases below a threshold provides the estimated d.

How to chose the lag  and the dimension d

40

After reconstructing the attractor, we can characterize it by 

the fractal dimension and the Lyapunov exponent.



 A stable fixed point has negative s (since perturbations 

in any direction die out)

 An attracting limit cycle has one zero  and negative s

 A chaotic attractor as at least one positive .

41

Adapted from U. Parlitz

Lyapunov exponents: measure how 

fast neighboring trajectories diverge



 Initial distance

 Final distance

 Local exponential grow

 The rate of grow is averaged over the attractor, 

which gives max

Steps to compute the maximum LE

42

A very popular method for detecting 

chaos in experimental time series.



A word of warning!
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 The rate of grow depends on the direction in the phase space.

 The algorithm returns  in the fastest expansion direction.

 Therefore, the algorithm always returns a positive number!

 This is a problem when computing the LE of noisy data.

Further reading: 
− F. Mitschke and M. Damming, Chaos vs. noise in experimental data, Int. 

J. Bif. Chaos 3, 693 (1993)

− A. Pikovsky and A. Politi, Lyapunov Exponents (Cambridge University

Press, 2016)



 Example: the fractal dimension of a coastline quantifies how 

the number of scaled measuring sticks required to measure 

the coastline changes with the scale applied to the stick.

Fractal dimension
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 Fractal dimension:

Source: wikipedia

→



 Another very popular method for detecting chaos 

in real-world data.

Grassberger-Procaccia correlation dimension algorithm
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Further reading:

P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors". 

Physica D vol. 9, pp.189, 1983.

L. S. Liebovitch and T. Toth, “A fast algorithm to determine fractal dimensions by 

box counting,”  Physics Letters A, vol. 141, pp. 386, 1989.

 Fractal dimension (box counting dimension):

 Problem: for time-series analysis, D0 does not distinguish 

between frequent and unfrequently visited boxes.

 An alternative: the 

correlation dimension.

g is the number of pairs of 

points with distance 

between them < .



Example of application of fractal analysis: 

distinguishes between diabetic retinopathy and normal patients
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Source: Pablo Amil, UPC

→

The fractal dimension of the blood vessels 
− in the normal human retina is 1.7

− tends to increase with the level of diabetic retinopathy 

− varies considerably depending on the image quality and the technique 

used for measuring the fractal dimension



Symbolic methods to identify patterns 

and structure in time series 
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Laser spikes

Time (s)

48

Can lasers mimic real neurons?

Time (ms)

Neuronal spikes



A. Longtin et al PRL (1991)

Experimental data when the laser 

current is modulated with a 

sinusoidal signal of period T0.

2T0 4T0

A. Aragoneses et al

Optics Express (2014)
49

Are there statistical similarities between neuronal 

spikes and optical spikes?

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search
http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search


A. Longtin

Int. J. Bif. Chaos (1993)

Laser ISIsNeuronal ISIs

M. Giudici et al PRE (1997)

A. Aragoneses et al

Optics Express (2014)

Return maps of inter-spike-intervals

Ti

Ti+1

50

HOW TO INDENTIFY TEMPORAL ORDER? 

MORE/LESS EXPRESSED PATTERNS?

http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search
http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search


 The time series {x1, x2, x3, …} is transformed (using an 

appropriated rule) into a sequence of symbols {s1, s2, …} 

 taken from an “alphabet” of possible symbols.

 Then consider “blocks” of D symbols (“patterns” or “words”).

 All the possible words form the “dictionary”.

 Then analyze the “language” of the sequence of words

- the probabilities of the words,

- missing/forbidden words, 

- transition probabilities, 

- information measures (entropy, etc).

Symbolic analysis

51



 if xi > xth  si = 0; else si =1

transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…}

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3:

{011   100    001    011   111 …}

 The number of words (patterns) grows as 2D

 More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example: 

if xi > xth1  si = 0; 

else if xi < xth2  si =2; 

else (xth2 <x i < xth1)  si =1. 

Threshold transformation: “partition” of the phase space

52



 Consider a time series x(t)={…xi, xi+1, xi+2, …}
 Which are the possible order relations among three data 

points? 

Ordinal analysis: a  method to find patterns in data 

Bandt and Pompe PRL 88, 174102 (2002)

 Count how many times each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



Analysis of D=3 patterns in spike sequences

021 012

012

021 

102

120

201

210

120



The number of ordinal patterns increases as D! 

 A problem for short datasets

 How to select optimal D? 

it depends on:

─ The length of the data

─ The length of the correlations



Threshold transformation: 

if xi > xth  si = 0; else si =1

 Advantage: keeps information 

about the magnitude of the 

values.

 Drawback: how to select an 

adequate threshold (“partition” 

of the phase space).

 2D

Ordinal transformation: 

if xi > xi-1  si = 0; else si =1

 Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values

 Drawback: no information 

about the actual data values

 D!

56

Comparison

2 4 6 8 10
10

0

10
2

10
4

10
6

10
8

D

 

 

2
D

D!

Number 

of 

symbols



 Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

 If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

 Else

We fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?

57
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Logistic map
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Example: intensity pulses emitted by a chaotic laser

60

N. Martinez Alvarez, S. Borkar and C. Masoller, “Predictability of extreme intensity 

pulses in optically injected semiconductor lasers” 

Eur. Phys. J. Spec. Top. 226, 1971 (2017).



 Example: climatological data (monthly sampled)

− Consecutive months:

− Consecutive years:

 Varying  = varying temporal resolution (sampling time)

How to detect longer temporal correlations? 

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

 Solution: a lag  allows considering long time-scales without 

having to use words of many letters

61

)...]5( ),4(),3(),2(),1( ),( [...  txtxtxtxtxtx

),...]4(),2(),( [...  txtxtx

 Problem: number of patterns increases as D!. 



62
Y. Zou, R.V. Donner, N. Marwan et al. / Physics Reports 787 (2019) 1–97



Very useful for “seasonal” data: allows to select the time 

scale of the analysis 

Example: el Niño index, monthly sampled
‒ Green

triangles: 

intra-

seasonal 

pattern, 

‒ blue

squares: 

intra-annual 

pattern 

‒ red circles: 

inter-annual 

pattern



Examples of application
-cardiac signals

-lasers & neurons 



ECG signals: analysis of time series of inter-beat intervals
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Classifying ECG signals according to ordinal probabilities
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 Analysis of raw data (statistics of ordinal patterns is almost 

unaffected by a few extreme values)

 The probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set.

U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012) 

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


Software

67

Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


Laser spikes: analysis of inter-spike intervals

210012



More probable pattern varies with the laser pump current 

75,000 – 880,000 spikes

Gray region: probabilities 

consistent with 1/6

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)
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The variation is not captured by linear correlation analysis
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Circle map

Minimal model? A modified circle map
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A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)
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 Spike correlations in sensory neurons (Neiman and Russell, PRE 2005)

 Can we test its validity as a minimal model for the laser spikes? 

Connection with neurons: the circle map 

describes many excitable systems

Map parameter K

0.1

0.2

Pi
Circle map

Laser spikes



Neuron model with 

Gaussian white noise and 

weak sinusoidal input: 

spikes are noise-induced

Comparing with synthetic neuronal spikes: good agreement 

Modulation amplitude

Empirical laser data

Modulation amplitude

Synthetic spikes
Pi

J. M. Aparicio-Reinoso, M. C. Torrent and C. Masoller, PRE 94, 032218 (2016)



 Excitable lasers: building 
blocks of photonic 
neurons. 

 Diode lasers: very very low 
cost, highly energy efficient.

 Very very fast.

 Main challenge: understand 
how lasers and neurons 
encode a weak periodic 
signal in the presence of 
noise.

74

Uncovering similarities can be interesting. But useful?

Maybe…



How to quantify unpredictability 

and complexity?



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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 The time-series is described by a set of probabilities

 Shannon entropy:

 Interpretation: “quantity of surprise one should feel upon 

reading the result of a measurement” 
K. Hlavackova-Schindler et al, Physics Reports 441 (2007)

 Simple example: a random variable takes values 0 or 1 with 

probabilities: p(0) = p, p(1) = 1 − p.

 H = −p log2(p) − (1 − p) log2(1 − p).

 p=0.5: Maximum unpredictability.

Information measure: Shannon entropy
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 Entropy computed from ordinal probabilities.

 Number of bins = # of ordinal patterns (D!)

Permutation entropy
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Permutation entropy (PE) of the Logistic map

Bandt and Pompe

Phys. Rev. Lett.  2002

79

Entropy per symbol:

 x(i+1)=r x(i)[1-x(i)] 

Robust to noise

Entropy:  measures unpredictability or disorder. 

How to quantify Complexity?



H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0 

Order DisorderChaos

We would like to find a quantity “C” that measures complexity, 

as the entropy, “H”, measures unpredictability, and, for low-

dimensional systems, the Lyapunov exponent measures chaos.

Source: O. A. Rosso



Feldman, McTague and Crutchfield, Chaos 2008

“A useful complexity measure needs to do more

than satisfy the boundary conditions of vanishing

in the high- and low-entropy limits.”

“Maximum complexity occurs in the region

between the system’s perfectly ordered state

and the perfectly disordered one.”
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Information measures

 Assuming that we know the set of probabilities P=[pi, i=1,Nbin] 

that characterizes a time series, several information measures 

have been proposed, a few popular ones are:

Shannon entropy

Tsallis entropy

Renyi entropy

    
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][
][

I

PI
PH 

where                    and Pe is the equilibrium probability 

distribution (that maximizes the information measure).

Example: if I[P] = Shannon entropy

then Pe = [pi=1/Nbin for i=1,Nbin]

and Imax = ln(Nbin)

][max ePII 

1][0  PH

Normalization



Measures the “distance“ from P to the equilibrium 

distribution, Pe

where Qo is a normalization constant such that 1][0  PQ

 ePPDQPQ ,][ 0

Disequilibrium Q
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Distance between two distributions P and Pe

Read more: S-H Cha: Comprehensive Survey on Distance/Similarity Measures 

between Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007)

Euclidean

Kullback–Leibler divergence

(relative entropy)

Jensen divergence

http://www.fisica.edu.uy/~cris/teaching/Cha_pdf_distances_2007.pdf


A family of complexity measures 

can be defined as:

where

A = S, T, R (Shannon, Tsallis, Renyi)

B = E, K, J (Euclidean, Kullback, Jensen)

][][][ PQPHPC BA 

][][][ PQPHPC JSMPR 

][][][ PQPHPC ESLMC  Lopez-Ruiz, Mancini & Calbet, Phys. Lett. A (1995).

Anteneodo & Plastino, Phys. Lett. A (1996).

Martín, Plastino & Rosso, Phys. Lett. A (2003).

Statistical complexity measure C 



The complexity of the Logistic Map

87

x(i+1)=r x(i)[1-x(i)] 

Martín, Plastino, & Rosso, Physica A 2006

Euclidian 

distance

Jensen 

distance

Map parameter

Map parameter



The (entropy, complexity) plane: a useful 

tool to distinguish noise from chaos

88

O. A. Rosso et al, Phys. Rev. Lett. 99, 154102 (2007)



Many complexity measures have been proposed

89

Further reading: L. Tang et al, “Complexity testing techniques for time series data: A 

comprehensive literature review”, Chaos, Solitons and Fractals 81 (2015) 117–135 



 The complexity of an object is a measure of the 

computability resources needed to specify the object.

Kolmogorov complexity

Example: Let’s consider 2 strings of 32 letters:

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7 

 The first string has a short description: “ab 16 times”.

 The second has no obvious description: complex or random? 

 The Lempel & Zip complexity is an estimation of the 

Kolmogorov complexity.



Lempel & Zip complexity of 

the Logistic Map

91Kaspar and Schuster, Phys Rev. A 1987



 Return maps

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Distribution of data values

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis

92



 A graph: a set of 

“nodes” connected 

by a set of “links”

 Nodes and links can 

be weighted or 

unweighted

 Links can be 

directed or 

undirected

 More in part 3 

(multivariate time 

series analysis)

What is a network?



We use symbolic patterns as the nodes of the network. 

And the links? Defined as the transition probability  → 

Adapted from M. Small (The University of Western Australia)

 In each node i: 

j wij=1

 Weigh of node i: the 

probability of pattern i

(i pi=1)

Weighted and 

directed network



Network-based diagnostic tools

• Entropy computed from node weights (permutation entropy)

• Average node entropy (entropy of the link weights)

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc.

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network)

ijiji wws   log



A first test with the 

Logistic map

D=4

Detects the merging 

of four branches, not 

detected by the 

Lyapunov exponent. 

C. Masoller et al, NJP (2015)

Sp = PE

Sn=S(TPs)

Lyapunov

exponent

Map parameter

Slinks

ac

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Approaching a “tipping point”

97

Control parameter

Can we use the ordinal network method to 

detect an early warning signal of a 

transition to a different dynamical regime?

Yes! Two examples: optical signals and brain signals



Apply the ordinal network method to laser data

 Two sets of experiments: intensity time series were recorded

‒ keeping constant the laser current.

‒ while increasing the laser current.

 We analyzed the polarization that turns on / turns off.

Is it possible to anticipate the switching?

No if the switching is fully stochastic.

As the laser current increases

Time

Intensity @ constant current 

Time



Early warning

Deterministic mechanisms 

must be involved.

First set of experiments (the current is kept constant): 

despite of the stochasticity of the time-series, the node 

entropy “anticipates” the switching

C. Masoller et al, NJP (2015)

Laser current

I

Laser current

I

Laser current

Node 

entropy 

sn

(D=3)

No 

warning

L=1000

100 windows

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


In the second set of experiments (current increases 

linearly in time): an early warning is also detected

Node 

entropy

Time

With slightly 

different 

experimental 

conditions: no 

switching.

C. Masoller et al, NJP (2015)

L=500, D=3

1000 time series

Time

http://iopscience.iop.org/1367-2630/17/2/023068/pdf/1367-2630_17_2_023068.pdf


Second application of the ordinal network method: 

distinguishing eyes closed and eyes open brain states

Analysis of two EEG datasets

BitBrain PhysioNet



Eye closed Eye open

 Symbolic analysis is applied to the raw data; similar 

results were found with filtered data using independent 

component analysis.



“Randomization”: the entropies increase and the 

asymmetry coefficient decreases 

Time window = 1 s

(160 data points)

C. Quintero-Quiroz et al, “Differentiating resting brain states using ordinal 

symbolic analysis”, Chaos 28, 106307 (2018).

https://arxiv.org/abs/1805.03933


Another way to represent a time series as a 

network: the horizontal visibility graph (HVG)

Luque et al PRE (2009); Gomez Ravetti et al, PLoS ONE (2014)

 Unweighted and undirected graph

Rule: data points i and j are connected if there is “visibility” 

between them

i

Xi

Parameter free!



Consider the following time series:

Exercise

105

How many links (“degree”) does each data point have?



How to characterize the HV graph? The degree distribution

Strogatz, Nature 2001

Regular Random Scale-free

From the degree distribution of the horizontal visibility 

graph we calculate the entropy: HVG entropy



HVG entropy: computed from the degree distribution

107

Time series
Degree distribution

HVG entropy 
k

kpkpH )(log)(

HV graph



Low pump High pump

E. G. Turitsyna et al Nat. Phot. 7, 783 (2013)

Example of application: Laminar → Turbulence transition 

in a fiber laser as the pump (control parameter) increases
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I(t)

I=0

=1

0.8 W

1.0 W

0.9 W

0.95 W

Time

Nonlinear 

temporal 

correlations?

Time

2

Raw and thresholded data

L. Carpi and C. Masoller, “Persistence and stochastic periodicity in the intensity

dynamics of a fiber laser during the transition to optical turbulence”, 

Phys. Rev. A 97, 023842 (2018). 



Surrogate

HVG or PE

“thresholded” data

S

Aragoneses et al, PRL (2016)

PE/HVG from 

“raw” data

(the abrupt transition is 

robust with respect to the 

selection of the threshold)

HVG

PE

Four different ways to compute the entropy 

Histogram of 

“raw” values

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Changing the sampling time  identifies ``hidden’’ time 

scales in the dynamics, undetected by correlation analysis

Below transition

at transition

above transition

Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


Space-time representation of 

a time series



The space-time representation of the intensity time series: 

a convenient way to visualize the dynamics

Color

scale: Ii




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


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


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............
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32212{I1, I2, … I , I+1 ,…}

 n

 →

=396 dt 431dt



n

496dt

Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902


 Embed the time series (find the embedding dimension and lag)

 Construct a binary matrix: Aij=1 if xi and xj are “close”, else Aij=0

 Plot Aij

Recurrence plots: another way to “visualize” a time series

114

Further reading: R.V. Donner, M. Small, et al. “Recurrence-based time series analysis 

by means of complex network methods”, Int. J. Bif. Chaos 21, 1019 (2011).



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis

115



How to obtain instantaneous amplitude and 

frequency information from a time series?

116



 (A) The original signal. (B) The instantaneous phase extracted 

using the Hilbert transform. (C) The instantaneous amplitude. 

 A = C cos(B).

Example: sine wave with increasing amplitude and frequency

117

G. Lancaster et al, Physics Reports 748 (2018) 1–60



118

Rossler

Second example
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x

HT[x]

x

y=HT[x]

Third example

Surface air temperature (SAT)

 HT[sin(t)]=cos(t)

Zappala, Barreiro and Masoller, Entropy (2016)

Normalization: =0, =1

http://www.mdpi.com/1099-4300/18/11/408/pdf


 For a real time series x(t) defines an analytic signal

Hilbert transform

120

A word of warning: 

Although formally a(t) and (t) can be defined for any x(t), 

they have a clear physical meaning only if x(t) is a 

narrow-band oscillatory signal: in that case, the a(t)

coincides with the envelope of x(t) and the instantaneous 

frequency, (t)=d/dt, coincides with the dominant 

frequency in the power spectrum.



x = 2.5 + cos(2*pi*203*t) + sin(2*pi*721*t) + cos(2*pi*1001*t);

y = hilbert(x);

plot(t,real(y),t,imag(y))

xlim([0.01 0.03])

legend('real','imaginary')

title('hilbert Function')

Hilbert with matlab

121

The sampling rate must be chosen in 

order to have at least 20 points per 

characteristic period of oscillation.



Another way to define a “phase”

122

Read more: 

B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics 

of coupled oscillators reconstructed from data, Phys. Rev. E 77, 066205 (2008).

M. Chavez, M. Besserve, C. Adam, et al., Towards a proper estimation of phase 

synchronization from time series, J. Neurosci. Methods 154, 149-160 (2006).
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 Can we use the Hilbert amplitude, phase, frequency, to :

‒ Identify and quantify regional climate change?

‒ Investigate synchronization in climate data?

 Problem: climate time series are not narrow-band.

 Usual solution (e.g. brain signals): isolate a narrow 

frequency band.

 However, the Hilbert transform applied to Surface Air 

Temperature time series yields meaningful insights.

Application to climate data



Cosine of Hilbert phase

124



How the seasons evolve?

Temporal evolution of the cosine of the Hilbert phase

125
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El Niño/La Niña-Southern Oscillation (ENSO)

Is the most important climate phenomena on the planet

 Occurs across the tropical Pacific Ocean  with  3-6 

years periodicity. 

 Variations in the surface temperature of the tropical 

eastern Pacific Ocean (warming: El Niño, cooling: 

La Niña) 

 Variations in the air surface pressure in the tropical 

western Pacific (the Southern Oscillation). 

 These two variations are coupled: 

• El Niño (ocean warming)  -- high air surface pressure,

• La Niña (ocean cooling)   -- low air surface pressure.
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Satellite imagery of sea surface temperatures shows the strong El Nino that helped 

make 1998 one of the hottest years on record (Image: National Oceanic and 

Atmospheric Administration, US).

January 1998: El Niño

How ocean surface temperature differed from average



Temperature anomalies during 

La Niña (November 2007)
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Cosine of Hilbert phase 

during a El Niño period

(October 2015)

Cosine of Hilbert phase 

during a La Niña period

(October 2011)



The data:

 Spatial resolution 2.50 x 2.50  10226 time series

 Daily resolution 1979 – 2016  13700 data points

Where does the data come from?

 European Centre for Medium-Range Weather Forecasts 

(ECMWF, ERA-Interim). 

 Freely available.

“Features” extracted from each SAT time series 

 Time averaged amplitude, a

 Time averaged frequency, 

 Standard deviations, a, 

Changes in Hilbert amplitude and frequency detect 

inter-decadal variations in surface air temperature (SAT)



Relative decadal variations 

Relative variation is considered significant if: 

1979198820072016 
 aaa

19792016
       





a

a

ssa

a
2. 


ssa

a
2. 


or

100 “block” surrogates 

D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying changes in spatial

patterns of surface air temperature dynamics over several decades”, 

Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/
https://www.earth-syst-dynam-discuss.net/esd-2017-79/




Relative variation of average Hilbert amplitude uncovers 

regions where the amplitude of the seasonal cycle 

increased or decreased

 Decrease of precipitation: the solar radiation that is not 

used for evaporation is used to heat the ground.

 Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.



o

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


Relative change of time-averaged Hilbert frequency 

consistent with a north shift and enlargement of the 

intertropical convergence zone (ITCZ)
First ten years

Last ten years

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/


SAT → average in a time window → Hilbert

The colorcode shows the mean frequency (red fast, blue slow) 

Influence of pre-processing SAT time series by temporal 

averaging in a moving window: fast variability removed

No filter 1 month 3 months

How does the phase dynamics depend on the 

length of the averaging window?



Phase-date relation in a regular site

137

→
Pre-filtering 

SAT time 

series in a 

moving 

window of 

=41 days



In other sites: with appropriate pre-processing we 

uncover hidden regularity 

138

→
=41 days

→
=101 days



Variation of mean rotation period with the smoothing length

139

 Regular, quasi-regular and double period sites: a plateau at 1 year is 

found when increasing the averaging window (sooner or latter)

 Irregular site: no plateau.

 In El Niño and QBO sites: plateau at 4 and 2.5 years respectively.

D. A. Zappala, M. Barreiro, and C. Masoller, “Uncovering underlying regularities in 

climatological data through Hilbert phase analysis”, Chaos 29, 051101 (2019)



Can we understand the variation of T with  ?



Simple model: two sinusoidal oscillations (the annual 

cycle and a slower oscillation) and autoregressive noise

141

We generate synthetic data. We know the underlying equations 

and parameters and so can check the validity of our method.



And many more TS analysis 

methods
 Wavelets

 Detrended fluctuation analysis

 Sample entropy, approximate entropy

 Multifractality

 Topological data analysis

 Etc. etc.



There are MANY methods that return “features” that 

characterize time series.
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 How to identify similar time-series?

 How to compare different methods?

 How to identify similar methods?

B. D. Fulcher, N. S. Jones: Automatic time-series phenotyping 

using massive feature extraction. Cell Systems 5, 527  (2017).

https://arxiv.org/abs/1612.05296


Systems producing time-series with different features (A/B)

144

Examples presented in this 

course:

 Laser intensity (noise or 

chaos)

 EEG signals (eyes open or 

closed)

 ECG signals (congestive 

heart failure or healthy 

control)

 Etc.



Features extracted from each time series

145

HCTSA (highly comparative time-series analysis) extracts, 

from each time series, over 7700 features

Matlab code: www.github.com/benfulcher/hctsa



What to do with more than 

7700 features?



Each row represents a time series and each column represents 

a feature that encapsulates some property of that time series.

Features normalized such that max. value =1, min. value 0.

Feature matrix

147



Example of “feature normalization”

148

How to extract information from the feature matrix?

 Distribution of CHF cases (red crosses) and healthy subjects (blue filled 

circles) in two-dimensional feature space. The separating (solid) lines are 

computed using a linear support vector machine (SVM).

 The probabilities are normalized with respect to the smallest and the largest 

value occurring in the data set.



Let’s take a step back. 

Assuming we have computed 120 ordinal probabilities. 

What we do next?

149

O. A. Rosso et al, Phys. Rev. Lett. 99, 154102 (2007)



Discriminative features

Extracting meaningful insights from feature matrix for 

classification (diagnose disease, gene function, etc.)

150

Eyes closed Eyes open

Dimensionality reduction



 Many methods for reducing high-dimensional data to a 

small number of dimensions.

 Example:

Nonlinear dimensionality reduction (NLDR)

151

Each image of the letter 'A‘ has 32x32 

pixels = vector of 1024 pixel values
NLDR reduces the data into just two 

dimensions (rotation and scale)

Source: 

Wikipedia

 A popular method: ISOMAP

 A linear method: Principal Component Analysis (PCA)



152This can also be used to find similar methods

Summarizing: how to find time-series with statistically 

similar features



 Symbolic analysis, network representation, spatiotemporal 

representation, etc., are useful tools for investigating 

complex signals.

 Different techniques provide complementary information.

Take home messages

“…nonlinear time-series analysis has been used to great 

advantage on thousands of real and synthetic data sets from a 

wide variety of systems ranging from roulette wheels to lasers to 

the human heart. Even in cases where the data do not meet the 

mathematical or algorithmic requirements, the results of 

nonlinear time-series analysis can be helpful in understanding, 

characterizing, and predicting dynamical systems…”

Bradley and Kantz, CHAOS 25, 097610 (2015)
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