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 Return maps

 Distribution of data values

 Autocorrelation 

 Statistical significance and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic methods 

 Information theory measures: entropy and complexity

Methods of time series analysis

2



X = {x1, x2, … xN}

 First step: Look at the data. 

 Examine “simple” properties: 

‒ Return map: plot of xi vs. xi+

‒ Distribution of data values 

‒ Auto-correlation

‒ Fourier spectrum

To begin with the analysis of a time series
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Bi-decadal oxygen isotope data set d18O (proxy for 

palaeotemperature) from Greenland Ice Sheet Project 

Two (GISP2) for the last 10,000 years with 500 values 

given at 20 year intervals.

First example of a geophysical time series

4
A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



Discharge of the Elkhorn river (at Waterloo, Nebraska, 

USA) sampled daily for the period from 01 January 

1929 to 30 December 2001.

Second example
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A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



The geomagnetic auroral electrojet (AE) index sampled 

per minute for the 24 h period of 01 February 1978 and 

the differenced index:

Third example

6
A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).



 Mean (expected value of X):

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: “measures” the asymmetry of the distribution

 Kurtosis: measures the "tailedness“ of the distribution. For a 

normal distribution K=3.

 Coefficient of variation: normalized measure of the width of 

the distribution.          Cv =  / ||

How to characterize the 

distribution of data values? 
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S = E[Z3]

K = E[Z4]

)(tx
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Press WH et al. Numerical recipes: 

the art of scientific computing 

(Cambridge University Press)

 K<3: the distribution produces fewer 

and less extreme outliers than the 

normal distribution. An example is the 

uniform distribution.

 K=3: Normal Gaussian

 K>3: the tail approaches zero more 

slowly than a Gaussian, and therefore 

produces more outliers than the normal 

distribution. An example is the Laplace 

distribution.



Time

Low current (noise?)

High current (chaos?)

Example: intensity emitted by a diode laser with feedback, as 

the pump current increases (let see a video).

Intermediate current: spikes

Time

Time
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Video: how complex optical signals emerge from noisy 

fluctuations

https://youtu.be/nltBQG_IIWQ


Can we distinguish quantitatively the three regimes?

We recorded a large number of time series varying two experimental 

parameters: feedback strength and laser current.
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Panozzo et al, Chaos 27, 114315 (2017)

-1.5

Second method: Analyze the 

distribution of intensity values

If K in 3-3.3 (Gaussian dist.)  Noise

Else

If  increases with the pump current 

(keeping feedback constant)  Spikes

Else  Chaos

First method: Count the 

number of “spikes” (# of times 

the intensity falls below a 

threshold). 

Problem: chaos and noise 

can not be well distinguished.

spikes

noise

chaos

http://aip.scitation.org/doi/abs/10.1063/1.4986441?ai=1gvoi&mi=3ricys&af=R


 The return map allows us to see 

if x(t) and x(t+) are “correlated”.

 How to quantify?

 The autocorrelation function

 By definition: C(0)=1

Autocorrelation function (ACF)
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For two geophysical time series

 C()=0 indicates that x(t) and x(t+) are uncorrelated.

 C()>0 indicates persistence: large values tend to follow large 

ones, and small values tend to follow small ones, on average 

(more of the time than if the time series were uncorrelated).

 C()<0 indicates anti-persistence: large values tend to follow 

small ones and small values tend to follow large ones.



Back to the three examples of geophysical time series
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A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).

Slow decay: 

long-range

correlations.

Rapid decay: 

short-range

correlations.



14Source: wikipedia

Problem with the ACF: it only detects linear correlations 

between two data points  it is important to analyze 

nonlinear correlations and higher order correlations.

x(t)

x
(t

+
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 Real observed time series. 

 Generate an ensemble of 

“surrogate” time series that are 

both “similar“ to the original and 

also consistent with the specific 

null hypothesis (NH) that we 

want to test. 

 Measure an statistical property: 

“d” in the original series and “s(i)” 

in the ensemble time series.

 Is “d” consistent with the 

distribution of “s(i)” values? 

− No! we reject the NH.

− Yes! we “fail to reject” the NH. 

Significance analysis: the method of surrogate data

M. Small, Applied Nonlinear Time 

Series Analysis (World Scientific, 2005)



p value
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Warning: the p-value only measures the compatibility of an 

observation with a hypothesis, not the truth of the hypothesis.

Altman and Krzywinski, Interpreting P values. Nature Methods 14, 213 (2017).



 Return maps

 Distribution of data values

 Autocorrelation 

 Statistical significance and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time series analysis
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 Real systems are in general high-dimensional and we can 

only measure a few (hopefully relevant) variables.

 Models are too complex and have many parameters: 

reconstructing the phase space may allow to understand 

the effect of different parameters.
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Why we want to reconstruct the phase space of a system 

from an observed (scalar) time series?

Example: the intensity emitted by a diode laser with optical feedback



A popular time series: monthly mean total sunspot number

19http://sidc.oma.be/silso/infosnmtot



Attractor reconstruction: “embed” the time series in a phase-space 

of dimension d using delay  coordinates
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How to identify (and quantify) chaos in observed data? 

Observed time series S = {s(1), s(2), … s(t) … }

Adapted from U. Parlitz (Gottingen)



Reconstruction using delay coordinates
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A problem: how to chose the embedding parameters 

(lag , dimension d)

Bradley and Kantz, CHAOS 25, 097610 (2015)



Example: 2D representation of a human ECG signal
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H. Kantz and T. Schreiber, Cambridge University Press 2003



 A stable fixed point has negative s (since perturbations 

in any direction die out)

 An attracting limit cycle has one zero  and negative s

 A chaotic attractor as at least one positive .
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Adapted from U. Parlitz (Gottingen)

Lyapunov exponents: measure how fast neighboring 

trajectories diverge.



 Initial distance

 Final distance

 Local exponential grow

 The rate of grow is averaged over the attractor, 

which gives max

Steps to compute the maximum LE
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A very popular method for detecting 

chaos in experimental time series.



On the interpretation of the maximum Lyapunov

exponent: a word of warning! 
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 The algorithm returns  in the fastest expansion direction.

 The algorithm always returns a positive number!

 This is a main problem when computing the LE of noisy 

data.

Every time series analysis algorithm returns a number of any 

time series. But is it useful?

Further reading: 

F. Mitschke and M. Damming, Chaos vs. noise in experimental data, 

Int. J. Bif. Chaos 3, 693 (1993)



 Example: the fractal dimension of a coastline quantifies how 

the number of scaled measuring sticks required to measure 

the coastline changes with the scale applied to the stick.

Fractal dimension
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 Fractal dimension:

Source: Wikipedia

→



Application of fractal analysis
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The fractal dimension of the blood vessels in the normal 

human retina is about 1.7 while it tends to increase with 

the level of diabetic retinopathy.

P. Amil et al., PLoS ONE 14, e0220132 (2019).



 Another very popular method for detecting chaos 

in real-world data.

Grassberger-Procaccia correlation dimension algorithm
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Further reading:

P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors". Physica

D vol. 9, pp.189, 1983.

L. S. Liebovitch and T. Toth, “A fast algorithm to determine fractal dimensions by box 

counting,”  Physics Letters A, vol. 141, pp. 386, 1989.

 Fractal dimension (box counting dimension):

 Problem: for time-series analysis, D0 does not distinguish 

between frequently and unfrequently visited boxes.

 An alternative: the correlation dimension, based on 

calculating  the number of pairs of points with distance 

between them < .



 Return maps

 Distribution of data values

 Correlation and Fourier analysis

 Autocorrelation 

 Statistical significance and surrogates

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time series analysis
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Laser spikes

Time (s)
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Can lasers mimic real neurons?

Time (ms)

Neuronal spikes

 Are there statistical similarities? 

 A popular technique: define spike times via “threshold 

crossings” and analyze the statistical properties of the 

sequence of inter-spike-intervals (ISIs). Data compression!

 Results should be robust to small variations of the threshold.



 The time series {x1, x2, x3, …} is transformed (using an 

appropriated rule) into a sequence of symbols {s1, s2, …} 

 Symbols are taken from an “alphabet” of possible symbols.

 Then consider “blocks” of D symbols (“patterns” or “words”).

 All the possible words form the “dictionary”.

 Then analyze the “language” of the sequence of words

- the probabilities of the words,

- missing/forbidden words, 

- transition probabilities, 

- information measures (entropy, etc).

Symbolic analysis
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 if xi > xth  si = 0; else si =1

transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…}

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3:

{011   100    001    011   111 …}

 The number of words (patterns) grows as 2D

 More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example: 

if xi > xth1  si = 0; 

else if xi < xth2  si =2; 

else (xth2 <x i < xth1)  si =1. 

Threshold transformation: “partition” of the phase space

32



 Consider a time series x(t)={…xi, xi+1, xi+2, …}

 Which are the possible order relations among three 

consecutive data points? 

Ordinal analysis: threshold-less method to define symbols 

Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)

 Count how many times each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



Analysis of D=3 patterns in spike sequences

021 012

012

021 

102

120

201

210

120



The number of ordinal patterns increases as D! 

 A problem for short datasets

 How to select optimal D? 

it depends on:

─ The length of the data

─ The length of the correlations



Threshold transformation: 

if xi > xth  si = 0; else si =1

 Advantage: keeps information 

about the magnitude of the 

values.

 Drawback: how to select an 

adequate threshold (“partition” 

of the phase space).

 # of symbols: 2D

Ordinal transformation: 

if xi > xi-1  si = 0; else si =1

 Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values

 Drawback: no information 

about the actual data values

 # of symbols: D!
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Comparison between the two rules to define symbols
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 Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

 If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

 Else

We fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?

37
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Logistic map
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 Example: climatological data (monthly sampled)

− Consecutive months:

− Consecutive years:

 Varying  = varying temporal resolution (sampling time)

How to detect longer temporal correlations? 

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

 Solution: a lag  allows considering long time-scales without 

having to use words of many letters

39

)...]5( ),4(),3(),2(),1( ),( [...  txtxtxtxtxtx

),...]4(),2(),( [...  txtxtx

 Problem: number of patterns increases as D!. 
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Y. Zou, R.V. Donner, N. Marwan et al. / Physics Reports 787 (2019) 1–97

What to do if two 

values are exactly 

equal?

Which is the 

pattern?

Several possible 

solutions, a 

simple one is to 

add a very small 

amount of noise:

x(t) = x(t) + .
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Software
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Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


How to quantify unpredictability 

and complexity?



 Return maps

 Distribution of data values

 Autocorrelation 

 Statistical significance and surrogates

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

Methods of time-series analysis
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 The time-series is described by a set of probabilities

 Shannon entropy:

 Interpretation: “quantity of surprise one should feel upon 

reading the result of a measurement” Faser and Swinney (1986)

 Simple example: a random variable takes values 0 or 1 with 

probabilities: p(0) = p, p(1) = 1 − p.

 H = −p ln(p) − (1 − p) ln(1 − p).

 p=0.5: Maximum unpredictability.

Information measure: Shannon entropy
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 Entropy computed from ordinal probabilities.

 Number of probabilities = # of ordinal patterns 

(D!)

Permutation entropy
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Permutation entropy (PE) of the Logistic map

Bandt and Pompe

Phys. Rev. Lett.  2002
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Entropy per symbol:

x(i+1)=r x(i)[1-x(i)] 

Robust to noise

The entropy measures the degree of unpredictability or disorder. 

How to quantify Complexity?



H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0 

Order DisorderChaos

We would like to find a quantity “C” that measures complexity, 

as the entropy, “H”, measures unpredictability, and, for low-

dimensional systems, the Lyapunov exponent measures chaos.

Source: O. A. Rosso



Many complexity measures have been proposed

49

Further reading: L. Tang et al, “Complexity testing techniques for time series data: A 

comprehensive literature review”, Chaos, Solitons and Fractals 81 (2015) 117–135 



 The complexity of an object is a measure of the 

computability resources needed to specify the object.

Kolmogorov complexity

Example: Let’s consider 2 strings of 32 letters:

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7 

 The first string has a short description: “ab 16 times”.

 The second has no obvious description: complex or random? 

 The Lempel & Zip complexity is an estimation of the 

Kolmogorov complexity.



Lempel & Zip complexity of 

the Logistic Map

51Kaspar and Schuster, Phys Rev. A 1987
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