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 Quick review of ordinal analysis (lecture 1)

 Permutation entropy

 Network representation of a time-series

 Spatio-temporal representation of a time-series

 Instantaneous phase and amplitude

 Bivariate time series analysis: cross-correlation and 

mutual information

 Multivariate time series analysis: brain functional 

networks, climate networks, network inference
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 Consider a time series x(t)={…xi, xi+1, xi+2, …}

 Which are the possible order relations among three 

consecutive data points? 

Ordinal analysis: threshold-less method to define symbols 

Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)

 Count how many times each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.



Analysis of D=3 patterns in spike sequences
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The number of ordinal patterns increases as D! 



 Entropy computed from ordinal probabilities.

 Number of probabilities = # of ordinal patterns 

(D!)

Permutation entropy
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 A graph: a set of 

“nodes” connected 

by a set of “links”

 Nodes and links can 

be weighted or 

unweighted

 Links can be 

directed or 

undirected

 More in part 3 

(multivariate time 

series analysis)

What is a network?



We use symbolic patterns as the nodes of the network. 

And the links? Defined as the transition probability  → 

Adapted from M. Small (The University of Western Australia)

 In each node i: 

j wij=1

 Weigh of node i: the 

probability of pattern i

(i pi=1)

Weighted and 

directed network



Network-based diagnostic tools

• Entropy computed from node weights (permutation entropy)

• Average node entropy (entropy of the link weights)

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc.

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network)

ijiji wws   log



First application: distinguishing eyes closed and eyes 

open brain states

Analysis of two EEG datasets

BitBrain PhysioNet



Eye closed Eye open

Symbolic analysis is applied to the raw data; similar results were 

found with filtered data using independent component analysis.



“Randomization”: the entropies increase and the 

asymmetry coefficient decreases 

Time window = 1 s

(160 data points)

C. Quintero-Quiroz et al, “Differentiating resting brain states using ordinal 

symbolic analysis”, Chaos 28, 106307 (2018).

https://arxiv.org/abs/1805.03933


Low pump High pump

E. G. Turitsyna et al Nat. Phot. 7, 783 (2013)

Second application: Laminar → Turbulence transition in 

a fiber laser as the pump (control parameter) increases
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Raw and thresholded data

L. Carpi and C. Masoller, “Persistence and stochastic periodicity in the intensity

dynamics of a fiber laser during the transition to optical turbulence”, 

Phys. Rev. A 97, 023842 (2018). 



Ordinal analysis identifies ``hidden’’ periodicity

Aragoneses et al, PRL (2016)
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The space-time representation of the intensity time series: 

a convenient way to visualize the dynamics

Color

scale: Ii
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Aragoneses et al, PRL (2016)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033902
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 Time-delay due to propagation time (ns)

 Near threshold: stochastic spiking 

dynamics (quantum spontaneous 

emission noise). 

C. Masoller, Chaos 7, 455 (1997)

Semiconductor laser with feedback light

Model simulations: increasing the feedback strength  complex dynamics
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How to obtain information 

about instantaneous 

amplitude and frequency?

20

Source: Semantic scholar; D. Zappala et al, Chaos 30, 011103 (2020).

Shubnikov de Haas 

oscillations in a 

quantum spin system
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x

HT[x]

x

y=HT[x]

Third example

Surface air temperature (SAT)

 HT[sin(t)]=cos(t)

Zappala, Barreiro and Masoller, Entropy (2016)

Normalization: =0, =1

http://www.mdpi.com/1099-4300/18/11/408/pdf


For a real time series x(t) defines an analytic signal

Hilbert transform

22

A word of warning: 

Although formally a(t) and (t) can be defined for any x(t), 

they have a clear physical meaning only if x(t) is a 

narrow-band oscillatory signal: in that case, the a(t)

coincides with the envelope of x(t) and the instantaneous 

frequency, (t)=d/dt, coincides with the dominant 

frequency in the power spectrum.
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 Can we use the Hilbert amplitude, phase, frequency, to :

‒ Identify and quantify regional climate change?

‒ Investigate synchronization in climate data?

 Problem: climate time series are not narrow-band.

 Usual solution (e.g. brain signals): isolate a narrow 

frequency band.

 However, the Hilbert transform applied to Surface Air 

Temperature time series yields meaningful insights.

Application to climate data



Cosine of Hilbert phase
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How the seasons evolve?

Temporal evolution of the cosine of the Hilbert phase

25



Cosine of Hilbert phase 

during a El Niño period

(October 2015)

Cosine of Hilbert phase 

during a La Niña period

(October 2011)



The data:

 Spatial resolution 2.50 x 2.50  10226 time series

 Daily resolution 1979 – 2016  13700 data points

Where does the data come from?

 European Centre for Medium-Range Weather Forecasts 

(ECMWF, ERA-Interim). 

 Freely available.

“Features” extracted from each SAT time series 

 Time averaged amplitude, a

 Time averaged frequency, 

 Standard deviations, a, 

Changes in Hilbert amplitude and frequency detect 

inter-decadal variations in surface air temperature (SAT)



Relative decadal variations 

Relative variation is considered significant if: 
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D. A. Zappala, M. Barreiro and C. Masoller, “Quantifying changes in spatial

patterns of surface air temperature dynamics over several decades”, 

Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/
https://www.earth-syst-dynam-discuss.net/esd-2017-79/




Relative variation of average Hilbert amplitude uncovers 

regions where the amplitude of the seasonal cycle 

increased or decreased

 Decrease of precipitation: the solar radiation that is not 

used for evaporation is used to heat the ground.

 Melting of sea ice: during winter the air temperature is 

mitigated by the sea and tends to be more moderated.



o

D. A. Zappala et al., Earth Syst. Dynam. 9, 383 (2018)

https://www.earth-syst-dynam-discuss.net/esd-2017-79/
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Cross-correlation of two time series X and Y of length N

32

 -1  CX,Y  1

 CX,Y = CY,X

 The maximum of CX,Y() indicates the lag that renders 

the time series X and Y best aligned.

 Pearson coefficient:  = |CX,Y (0)|

the two time series are 

normalized to zero-mean 

=0 and unit variance, =1



Example: cross-correlation of cosine of Hilbert phase of 

SAT at a reference point (*), and all other regions

33



Cross-correlation analysis detects linear relationships only

34Source: wikipedia



 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI can also be computed with a lag-time.

 MI can also be computed from symbolic probabilities 

(e.g., probabilities of ordinal patterns).

Nonlinear correlation measure based on information 

theory: the mutual Information

35



Example: MI maps computed from Surface Air Temperature 

anomalies at a reference point in El Niño, and other regions

36

Histograms
3 months

ordinal 

patterns 

Inter-

annual

ordinal 

patterns 

3 years

ordinal 

patterns 

Ordinal analysis separates the times-scales of the interactions

Deza, Barreiro and Masoller, Eur. Phys. J. ST 222, 511 (2013)

http://www.fisica.edu.uy/~cris/Pub/epjst_deza_2013.pdf
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Brain functional network

Eguiluz et al, PRL 2005

Sij > Th

 Aij = 1, 

else Aij=0

Adjacency 

matrix



Graphical representation
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Thresholded

matrix = inferred 

(“functional”) 

network

Adjacency matrix Degree of a node: number of links

ki = j Aij



The climate system as a set of “interacting oscillators”

22/10/2021 Masoller 40



Complex network representation of the climate system

Donges et al, Chaos 2015

Surface Air Temperature

Anomalies (solar cycle removed)

Back to the climate 

system: interpretation 

(currents, winds, etc.)

More than 

10000 

nodes 

(with 

different 

sizes).

Daily 

resolution: 

more than 

13000 data 

points in 

each TS
Sim. measure 

+ threshold



Brain network Climate network
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Area weighted 

connectivity 

(AWC):
weighted degree 

(nodes represent 

areas with 

different sizes) 
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Th 

M. Barreiro, et. al, Chaos 21, 013101 (2011)

How to select the threshold ? If Sij > Th  Aij = 1, 

else Aij=0

http://www.fisica.edu.uy/~cris/Pub/chaos_2011.pdf


An important challenge in time-series analysis: how to 

infer the structure of the network from observed data

Strogatz, Nature 2001

Regular
Random Scale-free



 There are many statistical similarity measures to infer 

interactions from observations, i.e., to classify: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

 How to select the threshold?

 In “spatially embedded networks”, nearby nodes have the 

strongest links.

 How to keep weak-but-significant links?

A link classification problem

45

Sij > Th  Aij = 1, else Aij=0



Lagged |cross correlation|: 

Observed time series in nodes i and j: ai (t),  aj (t),  t=1, …,T

(normalized =0, =1)

Goal: use a system with known connectivity to test the 

performance of statistical similarity measures

Statistical Similarity Measure:

Sij = max | CCij () |

= | CCij (ij) | ij in [0,max]

G. Tirabassi et al., “Inferring the connectivity of coupled oscillators from time-series 

statistical similarity analysis”, Sci. Rep. 5 10829 (2015).

We compare with the Mutual Information, computed from 

probabilities of “raw” values and from ordinal probabilities 

https://www.nature.com/articles/srep10829.pdf


Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015) 

https://www.nature.com/articles/srep10829.pdf
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We also analyzed experimental data recorded from 12 chaotic 

Rössler electronic oscillators (symmetric and random coupling)

The Hilbert Transform 

was used to obtain 

phases from 

experimental data

for each coupling strength
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Results obtained with experimental data

Masoller 51

Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables



Generalizations of complex 

network analysis



Network structures:

Multilayer, multiplex, bipartite, networks of 

networks and many others
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Limitations of complex 

network analysis



 Links represent interactions between pairs of nodes.

 Simplicial complexes represent interactions among 

several nodes.

Interactions are not limited to pairs of elements

55

Example

Giusti et al., J Comput Neurosci (2016) 41:1–14



And many more time series 

analysis methods
 Wavelets

 Detrended fluctuation analysis

 Sample entropy, approximate entropy

 Multifractality

 Topological data analysis

 Etc. etc.



 Many methods are available for investigating complex 

signals.

 Different methods provide complementary information.

 Time series analysis allows us to obtain sets of “features”.

 Data science, machine learning: feature selection and 

analysis.

 Time series analysis is an interdisciplinary field with many 

applications.

Take home messages
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