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3.1 Dipolo eléctrico 

• Dos cargas iguales y opuestas separadas una distancia L (pequeña)  
• Momento dipolar eléctrico: 

 
 
 
 
 

• Campo creado por el dipolo: en el eje del dipolo, en un punto alejado 
 
 
 
Ejemplo de dipolo eléctrico: moléculas polares  (H20) 
Moléculas no-polares:  no poseen momento  
                             dipolar eléctrico permanente 
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Potencial creado por un dipolo 

Lejos del dipolo: 
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Campo creado por un dipolo 
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Energía potencial de un dipolo en un campo externo 
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 (El signo de – es debido a que el 
momento tiende a disminuir ) 



Polarizabilidad atómica 

• En un átomo neutro, en presencia de un campo externo se produce un 
momento dipolar inducido que es proporcional al campo externo. 
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=polarizabilidad atómica 

Modelo sencillo para calcular la polarizabilidad atómica: Asumimos que el conjunto 
de electrones de carga –q se puede considerar una esfera de radio “a” con una 
densidad de carga volumétrica uniforme   = -q/(4a3/3). En el punto donde se 
encuentra el núcleo (de carga +q) el campo creado por la esfera de electrones es: 
 
 
 
Y debe ser igual y opuesto al campo externo: 
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3.2 Polarización y susceptibilidad eléctrica 

• Los materiales dieléctricos están compuestos por un gran 
conjunto de dipolos eléctricos. 

• Se observa experimentalmente que cuando un dieléctrico 
se introduce entre las placas de un condensador, la 
capacidad del condensador aumenta en un factor k que 
depende del material. 

• Desarrollaremos una teoría microscópica de los materiales 
dieléctricos que explica este aumento de capacidad. 



Dieléctrico dentro de un condensador 

• Cuando un dieléctrico se sitúa en el campo E0 externo creado por un condensador, 
las moléculas se polarizan parcialmente tal que se produce un momento dipolar 
neto paralelo al campo. 

• La “respuesta” del material al campo externo depende de las características del 
material y de la temperatura.  

• Aparece una carga inducida que crea un campo se que opone al campo externo.  
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Permitividad y rigidez dieléctrica 

• Permitividad del dieléctrico:  
 

• Si el campo externo es muy intenso, los enlaces moleculares se rompen, el 
material se ioniza y se transforma en conductor. 

• La rigidez (o resistencia) dieléctrica es el valor límite de la intensidad del 
campo eléctrico para el cual un material es no-conductor.  

• Algunos valores típicos: 

0 k
d

A

d

A
kkCC

 0
0






Polarización y susceptibilidad eléctrica 

• Momento dipolar de un dipolo: 

 

• Polarización: momento dipolar por unidad de volumen (C/m2). 
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• Una polarización da lugar a una densidad de carga 
ligada o inducida 

 

• Veremos que la carga ligada es la suma de una densidad 
superficial y densidad volumétrica dadas por 

 

• Que producen un campo inducido opuesto al campo 
externo que induce la polarización. 

Pb


nPb

ˆ




inducidoE




Teoría molecular de las cargas inducidas 

Física con Ordenador: 
http://www.sc.ehu.es/sbweb/fisica/elecmagnet/
campo_electrico/dielectrico/dielectrico.htm 



Potencial creado por un material polarizado 
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Potencial y campo creado por un material polarizado 

• Si comparamos con el potencial creado por una distribución de carga  +  

 

 

 

• Las densidades de carga ligadas son: 

 

• Para calcular el campo creado por el material polarizado: 
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Densidad de carga ligada o inducida 
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3.3 Desplazamiento eléctrico y Ley de Gauss en 
un dieléctrico 

• Desplazamiento eléctrico: 
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• Densidad de carga total = densidad de carga ligada + densidad de carga libre 
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• Ley de Gauss generalizada (en un material dieléctrico): 

• Diferencial 

 

• Integral 
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3.4 Dieléctricos lineales, isotrópicos y homogéneos 

• En los dieléctricos lineales la polarización es proporcional al campo eléctrico 
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• La constante de proporcionalidad e es la susceptibilidad eléctrica, que 
caracteriza la “respuesta” de un material a un campo eléctrico. 

 

• El campo E es el campo total, creado por todas las cargas (libres y ligadas). 

 

• Si tenemos un campo externo E0, este induce una polarización, que da lugar a  
cargas ligadas que  crean su propio campo, Eb. El campo total será E = E0 + Eb. 

• Desplazamiento eléctrico 

•  = permitividad del material 

• k = constante dieléctrica o permitividad relativa  
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Dieléctricos lineales 

• Ejemplo: esfera dieléctrica de permitividad  con una carga q en el centro 
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Ejemplo: condensador con un dieléctrico lineal 
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3.5 Condiciones de contorno en medios 
dieléctricos 

• En el vacío vimos que (Tema 1): 
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• Cuando los medios son dieléctricos lineales: la densidad de carga ligada es 
proporcional a la densidad de carga libre 

• Cuando hay dieléctricos: 
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En el interior del dieléctrico si no hay cargas libres se cumple la ecuación de Laplace 



Ejemplo: calcular la capacidad de los condensadores 

• Las placas tienen área de dimensiones a x b y están separadas una distancia d 
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3.6 Energía electrostática en un medio dieléctrico 

• Vimos que el trabajo que hay que hacer para cargar un capacitor, cuando hay 
vacío entre sus placas, es  2

0
2

1
VCW 

• Cuando hay un dieléctrico entre las placas del condensador, hay que aumentar la 
carga libre para compensar la carga ligada, y el trabajo es:  
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• Se puede demostrar que en medios dieléctricos, la densidad de energía 
electrostática es:  
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3.7 Dieléctricos no LIH 

• En algunos cristales que contienen moléculas polares (ej. cuarzo) las tensiones 
mecánicas producen una polarización de las moléculas. 

• Este efecto se denomina efecto piezoeléctrico. 

• La polarización del material genera una diferencia de potencial que puede usarse 
para generar una corriente eléctrica. 

• El efecto piezoeléctrico se usa para convertir tensiones mecánicas 
(deformaciones) en señales eléctricas (ejemplo: micrófonos). 

• El efecto inverso (un voltaje aplicado genera una tensión mecánica que da lugar a 
una deformación) se usa en muchos dispositivos (ejemplo: auriculares). 

• En algunos cristales (piro eléctricos) cuando aumenta la temperatura se generan 
campos eléctricos. 

• En muchos cristales la polarización depende de la orientación del campo eléctrico 
(relativa a los ejes de simetría del cristal) 


